Skip to main content

Epilepsy: Computational Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Introduction

Epilepsy is a serious neurological disorder characterized by spontaneous recurrent seizures. In the electroencephalogram (EEG) of patients with epilepsy, one may observe seizures (ictal events) and interictal events, e.g., epileptic spikes or spike-waves. These events are characterized by a short duration and rapid onset and offset. The real problem is that about 30 % of the current population of 60 million patients with epilepsy does not respond to any treatment (Kwan and Brodie 2000). This problem is mostly due to an incomplete understanding of the mechanisms that underlie this pathology (e.g., van Drongelen 2007). As is the case for many other neurological diseases, this directly relates to a poor understanding of network function in general. Because of lack of experimental tools for studying network behavior at sufficient scale with the associated detail (e.g., van Drongelen 2010), there is a significant role for modeling in this field (e.g., Blenkinsop et al. 2012;...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott LF (2008) Theoretical neuroscience rising. Neuron 60:489–495

    Article  CAS  PubMed  Google Scholar 

  • Beenhakker MP, Huguenard JR (2009) Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62:612–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benayoun M, Cowan JD, van Drongelen W, Wallace E (2010) Avalanches in a stochastic model of spiking neurons. PLoS Comput Biol 6:e1000846

    Article  PubMed Central  PubMed  Google Scholar 

  • Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshé SL, Nordli D, Plouin P, Scheffer IE (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685

    Article  PubMed  Google Scholar 

  • Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166

    Article  CAS  PubMed  Google Scholar 

  • Blenkinsop A, Valentin A, Richardson MP, Terry JR (2012) The dynamic evolution of focal-onset epilepsies – combining theoretical and clinical observations. Eur J Neurosci 36:2188–2200

    Article  PubMed  Google Scholar 

  • Borisyuk RM, Kirilov AB (1992) Bifurcation analysis of a neural network model. Biol Cybern 66:319–325

    Article  CAS  PubMed  Google Scholar 

  • Chang H-J, Freeman WJ, Burke BC (1998) Optimization of olfactory model in software to give 1/f power spectra reveals numerical instabilities in solutions governed by aperiodic (chaotic) attractors. Neural Netw 11:449–466

    Article  PubMed  Google Scholar 

  • Coombes S (2010) Large-scale neural dynamics: simple and complex. Neuroimage 52(3):731–739

    Article  CAS  PubMed  Google Scholar 

  • Coombes S, Laing C (2009) Delays in activity-based neural networks. Philos Trans R Soc A Math Phys Eng Sci 367(1891):1117–1129

    Article  Google Scholar 

  • Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR (2007) Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E 76(5):051901

    Article  CAS  Google Scholar 

  • Cosandier-Rimélé D, Merlet I, Bartolomei F, Badier JM, Wendling F (2010) Computational modeling of epileptic activity: from cortical sources to EEG signals. J Clin Neurophysiol 27:465–470

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience computational and mathematical modeling of neural systems. MIT Press, Cambridge, MA

    Google Scholar 

  • De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell: II. Simulation of synaptic responses. J Neurophysiol 71:401–419

    PubMed  Google Scholar 

  • Destexhe A, Sejnowski TJ (2009) The Wilson–Cowan model, 36 years later. Biol Cybern 101:1–2

    Article  PubMed Central  PubMed  Google Scholar 

  • Douglas RJ, Martin KAC (1991) A functional microcircuit for cat visual cortex. J Physiol 440:735–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faye G, Faugeras O (2010) Some theoretical and numerical results for delayed neural field equations. Phys D 239(9):561–578

    Article  CAS  Google Scholar 

  • Foss J, Longtin A, Mensour B, Milton J (1996) Multistability and delayed recurrent loops. Phys Rev Lett 76:708–711

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56:139–150

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Schindler K, Baier G (2012) Self-organized transients in neural mass models of epileptogenic tissue dynamics. Neuroimage 59:2644–2660

    Article  PubMed  Google Scholar 

  • Grimbert F, Faugeras O (2006) Bifurcation analysis of Jansen’s neural mass model. Neural Comput 18:3052–3068

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hindriks R, van Putten MJ (2012) Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. Neuroimage 60:2323–2334

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neurons with graded responses have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 1:3088–3092

    Google Scholar 

  • Hutt A, Atay FM (2005) Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Phys D Nonlinear Phenom 203(1):30–54

    Article  Google Scholar 

  • Hutt A, Atay FM (2007) Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay. Chaos Solit Fractals 32(2):547–560

    Article  Google Scholar 

  • Hutt A, Bestehorn M, Wennekers T et al (2003) Pattern formation in intracortical neuronal fields. Netw Comput Neural Syst 14(2):351–368

    Article  Google Scholar 

  • Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical system. Proc Natl Acad Sci USA 105:3593–3598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366

    Article  CAS  PubMed  Google Scholar 

  • Jirsa VK, Haken H (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Phys D 99:503–526

    Article  Google Scholar 

  • Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  • Liley DT, Bojak I (2005) Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. J Clin Neurophysiol 22:300–313

    CAS  PubMed  Google Scholar 

  • Liley DTJ, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocortical activity. Netw Comput Neural Syst 13(1):67–113

    Article  Google Scholar 

  • Little WA (1974) The existence of persistent states in the brain. Math Biosci 19:101–120

    Article  Google Scholar 

  • Lopes da Silva FH (2008) The impact of EEG/MEG signal processing and modeling in the diagnostic and management of epilepsy. IEEE Rev Biomed Eng 1:143–156

    Article  PubMed  Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity. Biol Cybern 15:27–37

    CAS  Google Scholar 

  • Lytton WW (2008) Computer modelling of epilepsy. Nat Rev Neurosci 9:626–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory neurons. J Neurophysiol 66:1059–1079

    CAS  PubMed  Google Scholar 

  • Lytton WW, Contreras D, Desthexe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679–1696

    CAS  PubMed  Google Scholar 

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Article  CAS  PubMed  Google Scholar 

  • May RM (2004) Uses and abuses of mathematics in biology. Science 303:790–793

    Article  CAS  PubMed  Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  • Milton J (2000) Epilepsy: multistability in a dynamic disease. In: Walleczek J (ed) Self-organized biological dynamics & nonlinear control. Cambridge University Press, New York, pp 374–386

    Chapter  Google Scholar 

  • Milton J (2012) Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur J Neurosci 36:2156–2163

    Article  PubMed  Google Scholar 

  • Milton J, Jung P (2003) Epilepsy as a dynamic disease. Springer, Berlin

    Book  Google Scholar 

  • Nunez PL (1974) The brain wave equation: a model for the EEG. Math Biosci 21:219–291

    Article  Google Scholar 

  • Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  • Nunez PL, Srinivasan R (2006a) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117:2424–2435

    Article  PubMed Central  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2006b) Electrical fields of the brain, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  • Olmi S, Livi R, Politi A, Torcini A (2010) Collective oscillations in disordered neural networks. Phys Rev E 81:046119

    Article  Google Scholar 

  • Rosenblueth A, Wiener N (1945) The role of models in science. In: Philosophy of science, vol 12. The University of Chicago Press, Chicago, pp 316–321

    Google Scholar 

  • Roxin A, Brunel N, Hansel D (2005) Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett 94(23):238103

    Article  PubMed  Google Scholar 

  • Siekmeier PJ, van Maanen DP (2013) Development of antipsychotic medications with novel mechanisms of action based on computational modeling of hippocampal neuropathology. PLoS ONE 8:e58607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soltesz I, Staley S (2008) Computational neuroscience in epilepsy. Elsevier, Amsterdam

    Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Cambridge, MA

    Google Scholar 

  • Tattini L, Olmi S, Torcini A (2012) Coherent periodic activity in excitatory Erdos-Renyi neural networks: the role of network connectivity. Chaos 22:023133

    Article  PubMed  Google Scholar 

  • Touboul J, Wendling F, Chauvel P, Faugeras O (2011) Neural mass activity, bifurcations, and epilepsy. Neural Comput 23:3232–3286

    Article  PubMed  Google Scholar 

  • Traub RD, Llinas R (1979) Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J Neurophysiol 42:476–496

    CAS  PubMed  Google Scholar 

  • Traub RD, Miles R (1991) Neuronal networks of the hippocampus, vol 777. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Traub RD, Jefferys JG, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481:79–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FE, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93:2194–2232

    Article  PubMed  Google Scholar 

  • Ullah G, Schiff SJ (2009) Models of epilepsy. Scholarpedia 4(7):1409

    Article  Google Scholar 

  • van Albada SJ, Robinson PA (2009) Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. J Theor Biol 257:642–663

    Article  PubMed  Google Scholar 

  • van Drongelen W (2007) Guest editorial. J Clin Neurophysiol 24:85–86

    Article  Google Scholar 

  • van Drongelen W (2010a) Signal processing for neuroscientists, a companion volume: advanced topics, nonlinear techniques and multichannel analysis. Elsevier, Amsterdam

    Google Scholar 

  • van Drongelen W (2010b) Tools for epilepsy research. J Clin Neurophysiol 27:359

    Article  PubMed  Google Scholar 

  • van Drongelen W (2013) Modeling neural activity. ISRN Biomath 2013:ID 871472

    Google Scholar 

  • van Drongelen W, Lee HC, Hereld M, Jones D, Cohoon M, Elsen F, Papka ME, Stevens RL (2004) Simulation of neocortical epileptiform activity using parallel computing. Neurocomputing 58–60:1203–1209

    Article  Google Scholar 

  • van Drongelen W, Lee HC, Koch H, Hereld M, Elsen F, Chen Z, Stevens RL (2005) Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Trans Neural Syst Rehabil 13:236–241

    Article  Google Scholar 

  • van Drongelen W, Koch H, Elsen FP, Lee HC, Mrejeru A, Doren E, Marcuccilli CJ, Hereld M, Stevens RL, Ramirez JM (2006) The role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J Neurophysiol 96:2564–2577

    Article  PubMed  Google Scholar 

  • van Drongelen W, Lee HC, Stevens RL, Hereld M (2007) Propagation of seizure-like activity in a model of neocortex. J Clin Neurophysiol 24:182–188

    Article  PubMed  Google Scholar 

  • van Drongelen W, Martell A, Lee HC (2008) Neocortical epileptiform activity in neuronal models with biophysically realistic ion channels. In: Soltesz I, Staley S (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 168–183

    Chapter  Google Scholar 

  • van Gils SA, Janssens SG, Kuznetsov YA, Visser S (2013) On local bifurcations in neural field models with transmission delays. J Math Biol 66:837–87

    Article  PubMed  Google Scholar 

  • van Rotterdam A, Lopes da Silva FH, van den Ende J, Viergever MA, Hermans AJ (1982) A model of the spatial-temporal characteristics of the alpha rhythm. Bull Math Biol 44:283–305

    Article  PubMed  Google Scholar 

  • van Vreeswijk CA (1996) Partial synchronization of populations of pulse-coupled oscillators. Phys Rev E54:5522

    Article  Google Scholar 

  • van Vreeswijk CA, Abbott LF, Ermentrout GB (1994) Inhibition, not excitation, synchronizes coupled neurons. J Comput Neurosci 1:303–313

    Google Scholar 

  • Veltz R (2011) An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays. C R Math Acad Sci Paris 349(13–14):749–752

    Article  Google Scholar 

  • Veltz R, Faugeras O (2010) Local/global analysis of the stationary solutions of some neural field equations. SIAM J Appl Dyn Syst 9(3):954–998

    Article  Google Scholar 

  • Venkov NA, Coombes S, Matthews PC (2007) Dynamic instabilities in scalar neural field equations with space-dependent delays. Phys D Nonlinear Phenom 232(1):1–15

    Article  Google Scholar 

  • Visser S, Meijer HGE, Lee HC, van Drongelen W, van Putten MJAM, van Gils SA (2010) Comparing epileptiform behavior of meso-scale detailed models and population models of neocortex. J Clin Neurophysiol 27:471–478

    Article  PubMed  Google Scholar 

  • Visser S, Meijer HGE, van Putten MJAM, van Gils SA (2012) Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays. J Math Neurosci 2:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334:1569–1573

    Article  CAS  PubMed  Google Scholar 

  • Volman V, Bazhenov M, Sejnowski TJ (2012) Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci 6:1–10

    Article  Google Scholar 

  • Wallace E, Benayoun M, van Drongelen W, Cowan JD (2011) Emergent oscillations in networks of stochastic spiking neurons. PLoS ONE 6(5):e14804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wendling F, Chauvel P (2008) Transition to ictal activity in temporal lobe epilepsy: insights from macroscopic models. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 356–387

    Chapter  Google Scholar 

  • Wendling F, Bartolomei F, Mina F, Huneau C, Benquet P (2012) Interictal spikes, fast ripples and seizures in partial epilepsies – combining multi-level computational models with experimental data. Eur J Neurosci 36:2164–2177

    Article  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of nervous tissue. Biol Cybern 13:55–80

    CAS  Google Scholar 

  • Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 39:807–820

    Article  CAS  PubMed  Google Scholar 

Further Reading

Download references

Acknowledgements

This work was supported by the Dr. Ralph and Marian Falk Medical Research Trust.

Parts of the text are modified from van Drongelen (2013) and van Gils et al. (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan van Gils .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

van Gils, S., van Drongelen, W. (2013). Epilepsy: Computational Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_504-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_504-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics