Skip to main content

Two-Level Model of Mammalian Locomotor CPG

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 220 Accesses

Definition

Locomotor central pattern generator (CPG) in vertebrates is a neural network located in the spinal cord and capable of generating rhythmic neural activities enabling animal’s movements in the environment. The locomotor CPG produces the coordinated rhythmic activities of motoneurons driving contractions of the corresponding muscles resulting in the coordinated limb movements underlying locomotion. The two-level architecture of the mammalian locomotor CPG has been proposed from analysis of spontaneous deletions (errors in rhythmic motoneuron activity) and effects of afferent stimulations during fictive locomotor activity evoked in the decerebrate, immobilized cat preparation by continuous brainstem stimulation. The model suggests that the locomotor CPG contains a separate half-center rhythm generator (RG) and a pattern formation network (PF) controlled by the RG and defining the coordinated rhythmic pattern of motoneuron activity. The two-level model of the locomotor CPG...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AB:

Anterior biceps

EDL:

Extensor digitorum longus

GS:

Combined LGS and MG

LG:

Lateral gastrocnemius

LGS:

LG combined with soleus

MG:

Medial gastrocnemius

PerL:

Peroneus longus

Plant:

Plantaris

Psoas:

Iliopsoas

Quad:

Quadriceps

Sart:

Sartorius

Sm:

Semimembranosus

SmAB:

Semimembranosus combined with anterior biceps

TA:

Tibialis anterior

References

  • Angel MJ, Guertin P, Jiminez I, McCrea DA (1996) Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motoneurones during fictive locomotion. J Physiol 494:851–861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angel MJ, Jankowska E, McCrea DA (2005) Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. J Physiol 563(Pt 2):597–610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2+−dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78:3371–3385

    CAS  PubMed  Google Scholar 

  • Burke RE, Degtyarenko AM, Simon ES (2001) Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol 86:447–462

    CAS  PubMed  Google Scholar 

  • Degtyarenko AM, Simon ES, Norden-Krichmar T, Burke RE (1998) Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat. J Neurophysiol 79:447–463

    CAS  PubMed  Google Scholar 

  • Donelan JM, Pearson KG (2004) Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 92:2093–2104

    Article  CAS  PubMed  Google Scholar 

  • Edgerton VR, Grillner S, Sjostrom A, Zangger P (1976) Central generation of locomotion in vertebrates. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum Press, New York, pp 439–464

    Chapter  Google Scholar 

  • Gosgnach S, Quevedo J, Fedirchuk B, McCrea DA (2000) Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion. J Physiol 526:639–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84:308–319

    Article  Google Scholar 

  • Graham Brown T (1914) On the fundamental activity of the nervous centres: together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–41

    Article  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system. Motor control, sect 1, vol II. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    Article  CAS  PubMed  Google Scholar 

  • Guertin P, Angel MJ, Perreault M-C, McCrea DA (1995) Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. J Physiol 487:197–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967a) The effect of DOPA on the spinal cord: V. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70:369–388

    Article  CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967b) The effect of DOPA on the spinal cord: VI. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    Article  CAS  PubMed  Google Scholar 

  • Kercut GA, Bagust L (1995) The isolated mammalian spinal cord. Prog Brain Res 46:1–48

    Google Scholar 

  • Lafreniere-Roula M, McCrea DA (2005) Failure modes of fictive rhythmic behaviors provide clues to the possible organization of the mammalian central pattern generator. J Neurophysiol 94:1120–1132

    Article  PubMed  Google Scholar 

  • Lundberg A (1981) Half-centres revisited. In: Szentagothai J, Palkovits M, Hamori J (eds) Regulatory functions of the CNS. Motion and organization principles. Pergamon Akadem Kiado, Budapest, pp 155–167

    Chapter  Google Scholar 

  • McCrea DA (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol 533:41–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCrea DA, Shefchyk SJ, Stephens MJ, Pearson KG (1995) Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat. J Physiol 487:527–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noga BR, Kriellaars DJ, Brownstone RM, Jordan LM (2003) Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol 90:1464–1478

    Article  PubMed  Google Scholar 

  • Orlovsky GN, Deliagina T, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, New York

    Book  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    Article  PubMed  Google Scholar 

  • Perreault MC, Angel MJ, Guertin P, McCrea DA (1995) Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat. J Physiol 487:211–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perreault M, Shefchyk SJ, Jimenez I, McCrea DA (1999) Depression of muscle and cutaneous afferent-evoked monosynaptic field potentials during fictive locomotion in the cat. J Physiol 521:691–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prochazka A, Gorassini M (1998) Ensemble firing of muscle afferents recorded during normal locomotion in cats. J Physiol 507:293–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quevedo J, Fedirchuk B, Gosgnach S, McCrea DA (2000) Group I disynaptic excitation of cat hindlimb flexor and bifunctional motoneurones during fictive locomotion. J Physiol 525(Pt 2):549–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Shepherd J (eds) Handbook of physiology, Sect 12. American Physiological Society, Bethesda, pp 173–216

    Google Scholar 

  • Rossignol S, Dubuc R, Gossard J-P (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006a) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577(Pt 1):617–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006b) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577(Pt 2):641–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt BJ, Jordan L (2000) The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull 53(5):689–710

    Article  CAS  PubMed  Google Scholar 

  • Schomburg ED, Behrends HB (1978) The possibility of phase-dependent monosynaptic and polysynaptic Ia excitation to homonymous motoneurones during fictive locomotion. Brain Res 143:533–537

    Article  CAS  PubMed  Google Scholar 

  • Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501

    CAS  PubMed  Google Scholar 

  • Sinkjaer T, Andersen JB, Ladouceur M, Christensen LOD, Nielsen J (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol 523:817–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stecina K, Quevedo J, McCrea DA (2005) Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat. J Physiol 569(Pt 1):275–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whelan P, Bonnot A, O’Donovan M (2000) Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J Neurophysiol 84:2821–2833

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Shevtsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Shevtsova, N.A. (2013). Two-Level Model of Mammalian Locomotor CPG. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_49-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_49-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics