Skip to main content

Locomotor Pattern Generation in the Rodent Spinal Cord

  • Living reference work entry
  • First Online:

Synonyms

CPG; Locomotor central pattern generator; Spinal locomotor network

Definition

The locomotor central pattern generator is a neural network in the spinal cord that can generate the basic motor pattern for locomotion in the absence of sensory feedback or rhythmic input from the brain. Most research in rodents has focused on hind limb movements: the hind limb CPG is located in lower thoracic and lumbar segments of the spinal cord. This network generates both the locomotor rhythm (cycle frequency) and the detailed phasing of motoneuron activation during the cycle, including alternation of left and right limb movements and alternation of ipsilateral flexor and extensor activity.

Detailed Description

A central pattern generator (CPG) is a limited neural network that can produce an organized rhythmic motor output in the absence of sensory or descending inputs from other parts of the nervous system (Marder and Calabrese 1996). CPGs drive behaviors such as locomotion, respiration,...

This is a preview of subscription content, log in via an institution.

References

  • Alvarez FJ, Benito-Gonzalez A, Siembab VC (2013) Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Ann N Y Acad Sci 1279:22–31

    Article  CAS  PubMed  Google Scholar 

  • Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78:3371–3385

    CAS  PubMed  Google Scholar 

  • Brocard F, Tazerart S, Vinay L (2010) Do pacemakers drive the central pattern generator for locomotion in mammals? Neuroscientist 16:139–155

    Article  CAS  PubMed  Google Scholar 

  • Brocard F, Shevtsova NA, Bouhadfane M, Tazerart S, Heinemann U, Rybak IA, Vinay L (2013) Activity-dependent changes in extracellular Ca(2+) and K(+) reveal pacemakers in the spinal locomotor-related network. Neuron 77:1047–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brownstone RM, Wilson JM (2008) Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res Rev 57:64–76

    Article  PubMed  Google Scholar 

  • Butera R, Rinzel J, Smith JC (1999) Models of respiratory rhythm in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 81:382–397

    Google Scholar 

  • Butt SJ, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963

    Article  CAS  PubMed  Google Scholar 

  • Cowley KC, Schmidt BJ (1995) Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J Neurophysiol 74:1109–1117

    CAS  PubMed  Google Scholar 

  • Cowley KC, Schmidt BJ (1997) Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. J Neurophysiol 77:247–259

    CAS  PubMed  Google Scholar 

  • Crone SA, Quinlan KA, Zagoraiou L, Droho S, Restrepo CE, Lundfald L, Endo T, Setlak J, Jessell TM, Kiehn O, Sharma K (2008) Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60:70–83

    Article  CAS  PubMed  Google Scholar 

  • Crone SA, Zhong G, Harris-Warrick R, Sharma K (2009) In mice lacking V2a interneurons, gait depends on speed of locomotion. J Neurosci 29:7098–7109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duysens J (1977) Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats. J Neurophysiol 40:737–751

    CAS  PubMed  Google Scholar 

  • Duysens J (2006) How deletions in a model could help explain deletions in the laboratory. J Neurophysiol 95:562–563

    Article  PubMed  Google Scholar 

  • Dyck J, Lanuza GM, Gosgnach S (2012) Functional characterization of dI6 interneurons in the neonatal mouse spinal cord. J Neurophysiol 107:3256–3266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gosgnach S (2011) The role of genetically-defined interneurons in generating the mammalian locomotor rhythm. Integr Comp Biol. doi:10.1093/icb/icr1022

    PubMed  Google Scholar 

  • Gosgnach S, Lanuza GM, Butt SJ, Saueressig H, Zhang Y, Velasquez T, Riethmacher D, Callaway EM, Kiehn O, Goulding M (2006) V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440:215–219

    Article  CAS  PubMed  Google Scholar 

  • Gossard J-P, Dubuc R, Kolta A (eds) (2010) Walk, breathe, chew: the neural challenge: Part I. Progress in brain research. Elsevier, Amsterdam

    Google Scholar 

  • Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. In: Brooks VB (ed) Handbook of physiology, Section 1: the nervous system. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Hagglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13:246–252

    Article  PubMed  Google Scholar 

  • Hinckley CA, Hartley R, Wu L, Todd A, Ziskind-Conhaim L (2005) Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord. J Neurophysiol 93:1439–1449

    Article  PubMed  Google Scholar 

  • Jordan LM (1998) Initiation of locomotion in mammals. Ann N Y Acad Sci 860:83–93

    Article  CAS  PubMed  Google Scholar 

  • Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 57:183–191

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21:100–109

    Article  CAS  PubMed  Google Scholar 

  • Kjaerulff O, Kiehn O (1996) Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci 16:5777–5794

    CAS  PubMed  Google Scholar 

  • Kudo N, Yamada T (1987a) N-methyl-d, l-aspartate-induced locomotor activity in a spinal cord-hindlimb muscles preparation of the newborn rat studied in vitro. Neurosci Lett 75:43–48

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Yamada T (1987b) N-methyl-d, l-aspartate-induced locomotor activity in a spinal cord-hindlimb muscles preparation of the newborn rat studied in vitro. Neurosci Lett 75:43–48

    Article  CAS  PubMed  Google Scholar 

  • Kullander K, Butt SJ, Lebret JM, Lundfald L, Restrepo CE, Rydstrom A, Klein R, Kiehn O (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299:1889–1892

    Article  CAS  PubMed  Google Scholar 

  • Kwan AC, Dietz SB, Webb WW, Harris-Warrick RM (2009) Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord. J Neurosci 29:11601–11613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lafreniere-Roula M, McCrea DA (2005) Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J Neurophysiol 94:1120–1132

    Article  PubMed  Google Scholar 

  • Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42:375–386

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  • McCrea DA, Rybak IA (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog Brain Res 165:235–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Nishimaru H, Restrepo CE, Ryge J, Yanagawa Y, Kiehn O (2005) Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc Natl Acad Sci U S A 102:5245–5249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimaru H, Restrepo CE, Kiehn O (2006) Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. J Neurosci 26:5320–5328

    Article  CAS  PubMed  Google Scholar 

  • Panayi H, Panayiotou E, Orford M, Genethliou N, Mean R, Lapathitis G, Li S, Xiang M, Kessaris N, Richardson WD, Malas S (2010) Sox1 is required for the specification of a novel p2-derived interneuron subtype in the mouse ventral spinal cord. J Neurosci 30:12274–12280

    Article  CAS  PubMed  Google Scholar 

  • Pearson KG, Duysens J (1976) Function of segmental reflexes in the control of stepping in cockroaches and cats. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum, New York, pp 519–537

    Chapter  Google Scholar 

  • Quinlan KA, Kiehn O (2007) Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. J Neurosci 27:6521–6530

    Article  CAS  PubMed  Google Scholar 

  • Rabe N, Gezelius H, Vallstedt A, Memic F, Kullander K (2009) Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry. J Neurosci 29:15642–15649

    Article  CAS  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherwood WE, Harris-Warrick R, Guckenheimer J (2011) Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 30:323–360

    Article  PubMed  Google Scholar 

  • Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21:321–333

    Article  CAS  PubMed  Google Scholar 

  • Stein PS (2008) Motor pattern deletions and modular organization of turtle spinal cord. Brain Res Rev 57:118–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stepien AE, Arber S (2008) Probing the locomotor conundrum: descending the ‘V’ interneuron ladder. Neuron 60:1–4

    Article  CAS  PubMed  Google Scholar 

  • Vallstedt A, Kullander K (2013) Dorsally derived spinal interneurons in locomotor circuits. Ann N Y Acad Sci 1279:32–42

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Hartley R, Maxwell DJ, Todd AJ, Lieberam I, Kaltschmidt JA, Yoshida Y, Jessell TM, Brownstone RM (2005) Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J Neurosci 25:5710–5719

    Article  CAS  PubMed  Google Scholar 

  • Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, Shanks B, Akay T, Dyck J, Pearson K, Gosgnach S, Fan CM, Goulding M (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60:84–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong G, Droho S, Crone SA, Dietz S, Kwan AC, Webb WW, Sharma K, Harris-Warrick RM (2010) Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J Neurosci 30:170–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 590:4735–4759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Harris-Warrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Harris-Warrick, R. (2013). Locomotor Pattern Generation in the Rodent Spinal Cord. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics