Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Short-Term Synaptic Plasticity in Central Pattern Generators

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_467-1

Synonyms

Definition

Short-term synaptic plasticity (STP) is a transient (milliseconds to minutes) activity-dependent change in the amplitude of the postsynaptic current in response to presynaptic activity. Central pattern generators (CPGs) are neural networks in the central nervous system capable of producing coordinated rhythmic output without rhythmic input from sensory organs or from higher control centers.

Detailed Description

Short-term synaptic plasticity (STP) is a transient (milliseconds to minutes) activity-dependent change in the amplitude (strength) of the postsynaptic current in response to presynaptic activity. It has clear implications for neural signaling and has been studied for several decades. Much of the modeling work has focused on the events in the presynaptic terminal and primarily on the role of Ca2+ in synaptic release of neurotransmitters (Zucker & Regehr 2002; Fioravante and Regehr 2011...

Keywords

Depression Respiration Stein EGTA Dock 
This is a preview of subscription content, log in to check access

Notes

Acknowledgement

This work was supported in part by NIH grant MH060605.

References

  1. Arshavsky YuI, Orlovsky GN, Panchin YuV, Roberts A, Soffe SR (1993) Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci 16:227–233Google Scholar
  2. Atluri PP, Regehr WG (1996) Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 16:5661–5671PubMedGoogle Scholar
  3. Ayers J (2004) Underwater walking. Arthropod Struct Dev 33:347–360PubMedCrossRefGoogle Scholar
  4. Bertram R, Smith GD, Sherman A (1999) Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys J 76:735–750PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bertram R, Swanson J, Yousef M, Feng ZP, Zamponi GW (2003) A minimal model for G protein-mediated synaptic facilitation and depression. J Neurophysiol 90:1643–1653PubMedCrossRefGoogle Scholar
  6. Bornschein G, Arendt O, Hallermann S, Brachtendorf S, Eilers J, Schmidt H (2013) Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation. J Physiol 591:3355–3370PubMedGoogle Scholar
  7. Brostoff JM, Birns J, McCrea D (2008) Phenytoin toxicity: an easily missed cause of cerebellar syndrome. J Clin Pharm Ther 33:211–214PubMedCrossRefGoogle Scholar
  8. Burnashev N, Rozov A (2005) Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37:489–495PubMedCrossRefGoogle Scholar
  9. Burrone J, Neves G, Gomis A, Cooke A, Lagnado L (2002) Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells. Neuron 33:101–112PubMedCrossRefGoogle Scholar
  10. Butera RJ Jr, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82:398–415PubMedGoogle Scholar
  11. Calakos N, Schoch S, Sudhof TC, Malenka RC (2004) Multiple roles for the active zone protein RIM1alpha in late stages of neurotransmitter release. Neuron 42:889–896PubMedCrossRefGoogle Scholar
  12. Cordovez JM, Wilson CG, Solomon IC (2010) Geometrical analysis of bursting pacemaker neurons generated by computational models: comparison to in vitro pre-Botzinger complex bursting neurons. Adv Exp Med Biol 669:45–48PubMedCrossRefGoogle Scholar
  13. Del Negro CA, Koshiya N, Butera RJ Jr, Smith JC (2002a) Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. J Neurophysiol 88:2242–2250PubMedCrossRefGoogle Scholar
  14. Del Negro CA, Morgado-Valle C, Feldman JL (2002b) Respiratory rhythm: an emergent network property? Neuron 34:821–830PubMedCrossRefGoogle Scholar
  15. Deng PY, Klyachko VA (2011) The diverse functions of short-term plasticity components in synaptic computations. Commun Integr Biol 4:543–548PubMedCentralPubMedGoogle Scholar
  16. Felmy F, Neher E, Schneggenburger R (2003) Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37:801–811PubMedCrossRefGoogle Scholar
  17. Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274PubMedCentralPubMedCrossRefGoogle Scholar
  18. Foster KA, Kreitzer AC, Regehr WG (2002) Interaction of postsynaptic receptor saturation with presynaptic mechanisms produces a reliable synapse. Neuron 36:1115–1126PubMedCrossRefGoogle Scholar
  19. Friesen WO, Kristan WB (2007) Leech locomotion: swimming, crawling, and decisions. Curr Opin Neurobiol 17:704–711PubMedCentralPubMedCrossRefGoogle Scholar
  20. Goldin-Meadow S, Nusbaum H, Kelly SD, Wagner S (2001) Explaining math: gesturing lightens the load. Psychol Sci 12:516–522PubMedCrossRefGoogle Scholar
  21. Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586PubMedCrossRefGoogle Scholar
  22. Hallermann S, Fejtova A, Schmidt H, Weyhersmuller A, Silver RA, Gundelfinger ED, Eilers J (2010) Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68:710–723PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hennig MH (2013) Theoretical models of synaptic short term plasticity. Front Comput Neurosci 7:45PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315:1416–1420PubMedCrossRefGoogle Scholar
  25. Isope P (2013) Short-term synaptic plasticity and the ‘active calcium’ hypothesis at a central synapse. J Physiol 591.19:4681–4682PubMedCrossRefGoogle Scholar
  26. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207PubMedCrossRefGoogle Scholar
  27. Kaeser PS (2011) Pushing synaptic vesicles over the RIM. Cell Logist 1:106–110PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Sudhof TC (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:282–295PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kahn JA, Roberts A (1982) The neuromuscular basis of rhythmic struggling movements in embryos of Xenopus laevis. J Exp Biol 99:197–205PubMedGoogle Scholar
  30. Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195:481–492PubMedCentralPubMedGoogle Scholar
  31. Kozlov A, Kotaleski JH, Aurell E, Grillner S, Lansner A (2001) Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation. J Comput Neurosci 11:183–200PubMedCrossRefGoogle Scholar
  32. Li WC, Sautois B, Roberts A, Soffe SR (2007) Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity. J Neurosci 27:12267–12276PubMedCrossRefGoogle Scholar
  33. MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther 82:69–83PubMedGoogle Scholar
  34. Mamiya A, Manor Y, Nadim F (2003) Short-term dynamics of a mixed chemical and electrical synapse in a rhythmic network. J Neurosci 23:9557–9564PubMedGoogle Scholar
  35. Manor Y, Bose A, Booth V, Nadim F (2003) Contribution of synaptic depression to phase maintenance in a model rhythmic network. J Neurophysiol 90:3513–3528PubMedCrossRefGoogle Scholar
  36. Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717PubMedGoogle Scholar
  37. Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699PubMedCrossRefGoogle Scholar
  38. Markram H, Gupta A, Uziel A, Wang Y, Tsodyks M (1998) Information processing with frequency-dependent synaptic connections. Neurobiol Learn Memory 70:101–112CrossRefGoogle Scholar
  39. Matveev V, Sherman A, Zucker RS (2002) New and corrected simulations of synaptic facilitation. Biophys J 83:1368–1373PubMedCentralPubMedCrossRefGoogle Scholar
  40. Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 86:2691–2709PubMedCentralPubMedCrossRefGoogle Scholar
  41. Matveev V, Bertram R, Sherman A (2006) Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. J Neurophysiol 96:3389–3397PubMedCrossRefGoogle Scholar
  42. Mehta PP, Battenberg E, Wilson MC (1996) SNAP-25 and synaptotagmin involvement in the final Ca(2+)-dependent triggering of neurotransmitter exocytosis. Proc Natl Acad Sci USA 93:10471–10476PubMedCentralPubMedCrossRefGoogle Scholar
  43. Nadim F, Olsen OH, De Schutter E, Calabrese RL (1995) Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. J Comput Neurosci 2:215–235PubMedCrossRefGoogle Scholar
  44. Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399PubMedCrossRefGoogle Scholar
  45. Oh M, Zhao S, Matveev V, Nadim F (2012) Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. J Comput Neurosci 33:573–585PubMedCrossRefGoogle Scholar
  46. Pan B, Zucker RS (2009) A general model of synaptic transmission and short-term plasticity. Neuron 62:539–554PubMedCentralPubMedCrossRefGoogle Scholar
  47. Parker D, Grillner S (1999) Long-lasting substance-P-mediated modulation of NMDA-induced rhythmic activity in the lamprey locomotor network involves separate RNA- and protein-synthesis-dependent stages. Eur J Neurosci 11:1515–1522PubMedCrossRefGoogle Scholar
  48. Pena F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43:105–117PubMedCrossRefGoogle Scholar
  49. Regehr WG (2012) Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 4:a005702PubMedCrossRefGoogle Scholar
  50. Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16:1197–1207PubMedCrossRefGoogle Scholar
  51. Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci USA 106:2939–2944PubMedCentralPubMedCrossRefGoogle Scholar
  52. Ruiz R, Cano R, Casanas JJ, Gaffield MA, Betz WJ, Tabares L (2011) Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J Neurosci 31:2000–2008PubMedCrossRefGoogle Scholar
  53. Schaffhausen JH, Fischer TM, Carew TJ (2001) Contribution of postsynaptic Ca2+ to the induction of post-tetanic potentiation in the neural circuit for siphon withdrawal in Aplysia. J Neurosci 21:1739–1749PubMedGoogle Scholar
  54. Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212PubMedCrossRefGoogle Scholar
  55. Scott R, Rusakov DA (2006) Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. J Neurosci 26:7071–7081PubMedCentralPubMedCrossRefGoogle Scholar
  56. Sherwood WE, Harris-Warrick R, Guckenheimer J (2011) Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 30:323–360PubMedCrossRefGoogle Scholar
  57. Simon SM, Llinas RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48:485–498PubMedCentralPubMedCrossRefGoogle Scholar
  58. Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1:69–87PubMedCrossRefGoogle Scholar
  59. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729PubMedCentralPubMedCrossRefGoogle Scholar
  60. Stanley (1997) The calcium channel and the organization of the presynaptic release face. Trends Neurosci 20:404-409Google Scholar
  61. Stein W, Smarandache CR, Nickmann M, Hedrich UB (2006) Functional consequences of activity-dependent synaptic enhancement at a crustacean neuromuscular junction. J Exp Biol 209:1285–1300PubMedCrossRefGoogle Scholar
  62. Sudhof TC (2012) The presynaptic active zone. Neuron 75:11–25PubMedCentralPubMedCrossRefGoogle Scholar
  63. Tabak J, Murphey CR, Moore LE (2000) Parameter estimation methods for single neuron models. J Comput Neurosci 9:215–236PubMedCrossRefGoogle Scholar
  64. Tabak J, Rinzel J, O'Donovan MJ (2001) The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord. J Neurosci Off J Soc Neurosci 21:8966–8978Google Scholar
  65. Taruno A, Ohmori H, Kuba H (2012) Inhibition of presynaptic Na(+)/K(+)-ATPase reduces readily releasable pool size at the avian end-bulb of Held synapse. Neurosci Res 72:117–128PubMedCrossRefGoogle Scholar
  66. Trigo FF, Sakaba T, Ogden D, Marty A (2012) Readily releasable pool of synaptic vesicles measured at single synaptic contacts. Proc Natl Acad Sci USA 109:18138–18143PubMedCentralPubMedCrossRefGoogle Scholar
  67. Vavoulis DV, Straub VA, Kemenes I, Kemenes G, Feng J, Benjamin PR (2007) Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. Eur J Neurosci 25:2805–2818PubMedCrossRefGoogle Scholar
  68. Wadiche JI, Jahr CE (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32:301–313PubMedCrossRefGoogle Scholar
  69. Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97CrossRefGoogle Scholar
  70. Xu J, Wu LG (2005) The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46:633–645PubMedCrossRefGoogle Scholar
  71. Xu-Friedman MA, Regehr WG (2004) Structural contributions to short-term synaptic plasticity. Physiol Rev 84:69–85PubMedCrossRefGoogle Scholar
  72. Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21:6666–6672PubMedGoogle Scholar
  73. Zhao S, Sheibanie AF, Oh M, Rabbah P, Nadim F (2011) Peptide neuromodulation of synaptic dynamics in an oscillatory network. J Neurosci 31:13991–14004PubMedCentralPubMedCrossRefGoogle Scholar
  74. Zilly FE, Sorensen JB, Jahn R, Lang T (2006) Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 4:e330PubMedCentralPubMedCrossRefGoogle Scholar
  75. Zucker RS, Fogelson AL (1986) Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proc Natl Acad Sci USA 83:3032–3036PubMedCentralPubMedCrossRefGoogle Scholar
  76. Zucker RS, Regehr WG (2002) Short-Term Synaptic Plasticity. Annu Rev Physiol 64:355–405PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Federated Department of Biological SciencesRutgers University, New Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA