Skip to main content

Stability and Homeostasis in Small Network Central Pattern Generators

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 291 Accesses

Synopsis

All animals contain circuits in their central nervous system that produce rhythmic activity. The circuits, often referred to as central pattern generators (CPGs), typically underlie vital activities or behaviors, such as locomotion, respiration, heartbeat, digestion, circadian activity, etc. (Marder et al. 2005). By the very nature of these behaviors, they require a certain degree of stability of the individual parameters or features that characterize the activity to ensure the survival of the individual. In patterned activity, a key activity feature is the relative timing of activation (phase) of different components of the network. On the other hand, the nervous system is best known for its plasticity and capacity to change in response to many types of inputs. Thus, how stability of activity is ensured is the subject of intense research. In order to attain a stable state, the neurons in these circuits need mechanisms that monitor the state of the system to homeostatically...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amendola J, Woodhouse A, Martin-Eauclaire MF, Goaillard JM (2012) Ca(2)(+)/cAMP-sensitive covariation of I(A) and I(H) voltage dependences tunes rebound firing in dopaminergic neurons. J Neurosci 32:2166–2181

    Article  PubMed  CAS  Google Scholar 

  • Ball JM, Franklin CC, Tobin AE, Schulz DJ, Nair SS (2010) Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. J Neurosci 30:8637–8649

    Article  PubMed  CAS  Google Scholar 

  • Bucher D, Prinz AA, Marder E (2005) Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 25:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Burdakov D (2005) Gain control by concerted changes in I(A) and I(H) conductances. Neural Comput 17:991–995

    Article  PubMed  Google Scholar 

  • Carroll MS, Viemari JC, Ramirez JM (2013) Patterns of inspiratory phase-dependent activity in the in vitro respiratory network. J Neurophysiol 109:285–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Goaillard J-M, Taylor AL, Schulz DJ, Marder E (2009) Functional consequences of animal-to-animal variation in circuit parameters. Nat Neurosci 12:1424–1430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Greenberg I, Manor Y (2005) Synaptic depression in conjunction with A-current channels promote phase constancy in a rhythmic network. J Neurophysiol 93:656–677

    Article  PubMed  CAS  Google Scholar 

  • Hudson AE, Prinz AA (2010) Conductance ratios and cellular identity. PLoS Comput Biol 6:e1000838

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Katz PS (2009) Tritonia swim network. Scholarpedia 4(5):3638

    Google Scholar 

  • Khorkova O, Golowasch J (2007) Neuromodulators, not activity, control coordinated expression of ionic currents. J Neurosci 27:8709–8718

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21:100–109

    Article  PubMed  CAS  Google Scholar 

  • Lamb DG, Calabrese RL (2013) Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS One 8:e79267

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lansner A, Kotaleski JH, Grillner S (1998) Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate. Ann N Y Acad Sci 860:239–249

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Golowasch J, Marder E, Abbott LF (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci 18:2309–2320

    CAS  Google Scholar 

  • Luther JA, Robie AA, Yarotsky J, Reina C, Marder E, Golowasch J (2003) Episodic bouts of activity accompany recovery of rhythmic output by a neuromodulator- and activity-deprived adult neural network. J Neurophysiol 90:2720–2730

    Article  PubMed Central  PubMed  Google Scholar 

  • MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM (2003) Activity-independent homeostasis in rhythmically active neurons. Neuron 37:109–120

    Article  PubMed  CAS  Google Scholar 

  • MacLean JN, Zhang Y, Goeritz ML, Casey R, Oliva R, Guckenheimer J, Harris-Warrick RM (2005) Activity-independent coregulation of IA and Ih in rhythmically active neurons. J Neurophysiol 94:3601–3617

    Article  PubMed  Google Scholar 

  • Manor Y, Bose A, Booth V, Nadim F (2003) Contribution of synaptic depression to phase maintenance in a model rhythmic network. J Neurophysiol 90:3513–3528

    Article  PubMed  Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699

    Article  PubMed  CAS  Google Scholar 

  • Norris BJ, Weaver AL, Morris LG, Wenning A, Garcia PA, Calabrese RL (2006) A central pattern generator producing alternative outputs: temporal pattern of premotor activity. J Neurophysiol 96:309–326

    Article  PubMed  Google Scholar 

  • Norris BJ, Weaver AL, Wenning A, Garcia PS, Calabrese RL (2007) A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons. J Neurophysiol 98:2992–3005

    Article  PubMed  Google Scholar 

  • Norris BJ, Wenning A, Wright TM, Calabrese RL (2011) Constancy and variability in the output of a central pattern generator. J Neurosci 31:4663–4674

    Article  CAS  Google Scholar 

  • O’Leary T, Williams AH, Caplan JS, Marder E (2013) Correlations in ion channel expression emerge from homeostatic tuning rules. Proc Natl Acad Sci USA 110:E2645–E2654

    Article  PubMed Central  PubMed  Google Scholar 

  • Roffman RC, Norris BJ, Calabrese RL (2012) Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J Neurophysiol 107:1681–1693

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakurai A, Katz PS (2009) Functional recovery after lesion of a central pattern generator. J Neurosci 29:13115–13125

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci 9:356–362

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Goaillard JM, Marder EE (2007) Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc Natl Acad Sci USA 104:13187–13191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Selverston AI, Moulins M (1986) The Crustacean stomatogastric system: a model for the study of central nervous systems. Springer, Berlin/New York

    Google Scholar 

  • Skinner FK, Mulloney B (1998) Intersegmental coordination in invertebrates and vertebrates. Curr Opin Neurobiol 8:725–732

    Article  PubMed  CAS  Google Scholar 

  • Tang LS, Goeritz ML, Caplan JS, Taylor AL, Fisek M, Marder E (2010) Precise temperature compensation of phase in a rhythmic motor pattern. PLoS Biol 8 (8): e1000469

    Google Scholar 

  • Temporal S, Desai M, Khorkova O, Varghese G, Dai A, Schulz DJ, Golowasch J (2012) Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. J Neurophysiol 107:718–727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thoby-Brisson M, Simmers J (1998) Neuromodulatory inputs maintain expression of a lobster motor pattern- generating network in a modulation-dependent state: evidence from long- term decentralization in vitro. J Neurosci 18:2212–2225

    PubMed  CAS  Google Scholar 

  • Thoby-Brisson M, Simmers J (2002) Long-term neuromodulatory regulation of a motor pattern-generating network: maintenance of synaptic efficacy and oscillatory properties. J Neurophysiol 88:2942–2953

    Article  PubMed  Google Scholar 

  • Unal CT, Golowasch JP, Zaborszky L (2012) Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Front Behav Neurosci 6:21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Varkonyi PL, Kiemel T, Hoffman K, Cohen AH, Holmes P (2008) On the derivation and tuning of phase oscillator models for lamprey central pattern generators. J Comput Neurosci 25:245–261

    Article  PubMed  Google Scholar 

  • Williams TL (1992) Phase coupling by synaptic spread in chains of coupled neuronal oscillators. Science 258:662–665

    Article  PubMed  CAS  Google Scholar 

  • Williams AH, O’Leary T, Marder E (2013) Homeostatic regulation of neuronal excitability. Scholarpedia 8 (1):1656

    Google Scholar 

  • Zhang Y, Golowasch J (2011) Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms J Comput Neurosci 31:685–699

    Google Scholar 

  • Zhao S, Golowasch J (2012) Ionic current correlations underlie the global tuning of large numbers of neuronal activity attributes. J Neurosci 32:13380–13388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Golowasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Golowasch, J. (2014). Stability and Homeostasis in Small Network Central Pattern Generators. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_466-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_466-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics