Skip to main content

Sound Localization in Mammals, Models

Book cover Encyclopedia of Computational Neuroscience
  • 387 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akeroyd MA, Summerfield Q (1999) A fully temporal account of the perception of dichotic pitches. Br J Audiol 33:106–107

    Google Scholar 

  • Barron M, Marshall AH (1981) Spatial impression due to early lateral reflections in concert halls: the derivation of a physical measure. J Sound Vib 77(2):211–232

    Article  Google Scholar 

  • Baumgartner R, Majdak P, Laback B (2013) Assessment of sagittal-plane sound-localization performance in spatial-audio applications. In: Blauert J (ed) The technology of binaural listening, chapter 4. Springer, Berlin/Heidelberg/New York, pp 93–119

    Chapter  Google Scholar 

  • Bernstein L, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026–1036

    Article  PubMed  Google Scholar 

  • Blauert J (1969/1970) Sound localization in the median plane. Acustica, 22:205–213

    Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization (2nd revised). MIT Press, Berlin/Heidelberg/New York

    Google Scholar 

  • Blauert J (1999) Spatial hearing (Revised edition). Massachusetts Institute of Technology, Boston

    Google Scholar 

  • Blauert J, Cobben W (1978) Some consideration of binaural cross correlation analysis. Acustica 39:96–104

    Google Scholar 

  • Blauert J, Lindemann W (1986) Auditory spaciousness: some further psychoacoustic analysis. J Acoust Soc Am 80:533–542

    Article  CAS  Google Scholar 

  • Bodden M (1992) Binaurale Signalverarbeitung: Modellierung der Richtungserkennung und des Cocktail-Party-Effektes [Binaural signal processing: modelling the recognition of direction and the cocktail-party effect]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Bodden M (1993) Modeling human sound-source localization and the cocktail-party effect. Act Acust/Acustica 1:43–55

    Google Scholar 

  • Braasch J (2002) Localization in the presence of a distracter and reverberation in the frontal horizontal plane: II. Model algorithms. Act Acust/Acustica 88(6):956–969

    Google Scholar 

  • Braasch J (2003) Localization in the presence of a distracter and reverberation in the frontal horizontal plane: III. The role of interaural level differences. Act Acust/Acustica 89(4):674–692

    Google Scholar 

  • Braasch J (2005) Modeling of binaural hearing. In: Blauert J (ed) Communication acoustics. Springer Verlag, Berlin, pp 75–108

    Chapter  Google Scholar 

  • Braasch J, Blauert J (2011) Stimulus-dependent adaptation of inhibitory elements in precedence-effect models. In: Proceeding Forum Acusticum 2011. Aalborg, pp 2115–2120

    Google Scholar 

  • Braasch J, Clapp S, Parks A, Pastore T, Xiang N (2013) A Binaural Model that Analyses Acoustic Spaces and Stereophonic Reproduction Systems by Utilizing Head Rotations. In: Jens Blauert (ed) The Technology of Binaural Listening. Springer Berlin Heidelberg, pp 201–223

    Google Scholar 

  • Brungart D, Rabinowtz W (1999) Auditory localization of nearby sources. Head-related transfer functions. J Acoust Soc Am 106:1465–1479

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Carney LH, Colburn HS (1998a) A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time difference-sensitive excitatory and inhibitory inputs. J Acoust Soc Am 103:475–493

    Article  CAS  Google Scholar 

  • Cai H, Carney LH, Colburn HS (1998b) A model for binaural response properties of inferior colliculus neurons. II. A model with interaural time difference-sensitive excitatory and inhibitory inputs and an adaptation mechanism. J Acoust Soc Am 103:494–506

    Article  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10(10):3227–3246

    CAS  PubMed  Google Scholar 

  • Cherry EC, Sayers BMA (1956) “Human ‘cross-correlator’” – a technique for measuring certain parameters of speech perception. J Acoust Soc Am 28(5):889–895

    Article  Google Scholar 

  • Colburn HS (1977) Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. J Acoust Soc Am 61:525–533

    Article  CAS  PubMed  Google Scholar 

  • Dietz M, Ewert SD, Hohmann V, Kollmeier B (2008) Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Res 1220:234–245

    Article  CAS  PubMed  Google Scholar 

  • Dietz M, Ewert SD, Hohmann V (2011) Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Commun 53(5):592–605

    Article  Google Scholar 

  • Dizon RM, Colburn HS (2006) The influence of spectral, temporal, and interaural stimulus variations on the precedence effect. J Acoust Soc Am 119:2947–2964

    Article  PubMed  Google Scholar 

  • Djelani T (2001) Psychoakustische Untersuchungen und Modellierungsansätze zur Aufbauphase des auditiven Prazedenzeffektes. Ph.D. thesis, Ruhr-Universität Bochum

    Google Scholar 

  • Duifhuis H (1972) Perceptual analysis of sound. Ph.D. thesis, Techn Hogeschool Eindhoven, Eindhoven

    Google Scholar 

  • Faller C, Merimaa J (2004) Source localization in complex listening situations: SELECTION of binaural cues based on interaural coherence. J Acoust Soc Am 116:3075–3089

    Article  PubMed  Google Scholar 

  • Freyman RL, Zurek PM, Balakrishnan U, Chiang YC (1997) Onset dominance in lateralization. J Acoust Soc Am 101:1649–1659

    Article  CAS  PubMed  Google Scholar 

  • Grantham DW (1979) Discrimination of dynamic inter-aural intensity differences. J Acoust Soc Am 76:71–76

    Article  Google Scholar 

  • Grantham DW (1982) Detectability of time-varying inter-aural correlation in narrow-band noise stimuli. J Acoust Soc Am 72:1178–1184

    Article  CAS  Google Scholar 

  • Grantham DW, Wightman FL (1978) Detectability of varying interaural temporal differences. J Acoust Soc Am 63:511–523

    Article  CAS  Google Scholar 

  • Grantham DW, Wightman FL (1979) Detectability of a pulsed tone in the presence of a masker with time-varying inter-aural correlation. J Acoust Soc Am 65:1509–1517

    Article  CAS  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90(3):983–1012

    Article  CAS  PubMed  Google Scholar 

  • Hafter E (1997) Binaural adaptation and the effectiveness of a stimulus beyond its onset. In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum, Mahwah, pp 211–232

    Google Scholar 

  • Hartung K (1998). Modellalgorithmen zum Richtungshören, basierend auf Ergebnissen psychoakustischer und neurophysiologischer Experimente mit virtuellen Schallquellen [Model algorithms regarding directional hearing, based on psychoacoustic and neurophysiological experiments with virtual sound sources]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Hartung K, Trahiotis C (2001) Peripheral auditory processing and investigations of the “precedence effect” which utilize successive transient stimuli. J Acoust Soc Am 110:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Irons WA, Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high frequency auditory cortex. J Neurophysiol 63:1448–1466

    CAS  PubMed  Google Scholar 

  • Janko J, Anderson T, Gilkey R (1997) Using neural networks to evaluate the viability of monaural and inter-aural cues for sound localization. In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum Associates, Mahwah, pp 557–570

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

    Article  CAS  PubMed  Google Scholar 

  • Joris P (1996) Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. J Neurophysiol 76:2137–2156

    CAS  PubMed  Google Scholar 

  • Joris P, Yin T (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol 73:1043–1062

    CAS  PubMed  Google Scholar 

  • Kollmeier B, Gilkey RH (1990) Binaural forward and backward masking: evidence for sluggishness in binaural detection. J Acoust Soc Am 87:1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Langendijk EHA, Bronkhorst AW (2002) Contribution of spectral cues to human sound localization. J Acoust Soc Am 112(4):1583–1596

    Article  PubMed  Google Scholar 

  • Lehn K (2000) Unscharfe zeitliche Clusteranalyse von monauralen und inter-auralen Merkmalen als Modell der auditiven Szenenanalyse [Fuzzy time-based cluster analysis of monaural and inter-aural cues as a model of auditory scene analysis]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Lindemann W (1986a) Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization of stationary signals. J Acoust Soc Am 80:1608–1622

    Article  CAS  PubMed  Google Scholar 

  • Lindemann W (1986b) Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wave front. J Acoust Soc Am 80:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D (2005) Creating a sense of auditory space. J Physiol 566(1):21–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localisation and delay lines – do mammals fit the model? Trend Neurosci 26:347–350

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401

    Article  CAS  PubMed  Google Scholar 

  • Meddis R, Hewitt MJ, Shakleton TM (1990) Implementation details of a computational model of the inner hair-cell auditory-nerve synapse. J Acoust Soc Am 87:1813–1816

    Article  Google Scholar 

  • Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound localization. J Neurophysiol 1:107–120

    CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246

    Article  Google Scholar 

  • Nix J, Hohmann V (2000) Robuste Lokalisation im Störgeräusch auf der Basis statistischer Referenzen. In: Fortschr Akust DAGA 2000, pp 474–475

    Google Scholar 

  • Nix J, Hohmann V (2006) Sound source localization in real sound fields based on empirical statistics of interaural parameters. J Acoust Soc Am 119:463–479

    Article  PubMed  Google Scholar 

  • Okano T, Beranek LL, Hidaka T (1998) Relations among interaural cross-correlation coefficient (IACC E ), lateral fraction (LF E ), and apparent source width (ASW) in concert halls. J Acoust Soc Am 104:255–265

    Article  CAS  Google Scholar 

  • Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28(27):6914–6925

    Article  CAS  PubMed  Google Scholar 

  • Pulkki V, Hirvonen T (2009) Functional count-comparison model for binaural decoding. Act Acust/Acustica 95(5):883–900

    Article  Google Scholar 

  • Raatgever J (1980) On the binaural processing of stimuli with different interaural phase relations. Ph.D. thesis, Delft University of Technology, Delft

    Google Scholar 

  • Rateitschek K (2000) Ein binauraler Signalverarbeitungsansatz zur robusten maschinellen Spracherkennung in lärmerfüllter Umgebung [A binaural signal processing approach to robust speech recognition in noisy environments]. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Rayleigh L (1907) On our perception of sound direction. Phil Mag 13:214–232

    Article  Google Scholar 

  • Reed M, Blum J (1990) A model for the computation and encoding of azimuthal information by the lateral superior olive. J Acoust Soc Am 88:1442–1453

    Article  CAS  PubMed  Google Scholar 

  • Roman N, Wang D (2008) Binaural tracking of multiple moving sources. IEEE Trans Audio Speech Lang Processing 16(4):728–739

    Article  Google Scholar 

  • Roman N, Srinivasan S, Wang D (2006) Binaural segregation in multisource reverberant environments. J Acoust Soc Am 120(6):4040–4051

    Article  PubMed  Google Scholar 

  • Sayers BM, Cherry EC (1957) Mechanism of binaural fusion in the hearing of speech. J Acoust Soc Am 29:973–987

    Article  Google Scholar 

  • Shackleton TM, Meddis R, Hewitt MJ (1992) Across frequency integration in a model of lateralization. J Acoust Soc Am 91:2276–2279

    Article  Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3(3):520–528

    Article  CAS  Google Scholar 

  • Steinhauser A (1877) The theory of binaural audition. Phil Mag 7(181–197):261–274

    Google Scholar 

  • Stern R, Colburn H (1978) Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. J Acoust Soc Am 64:127–140

    Article  PubMed  Google Scholar 

  • Stern RM, Shear GD (1996) Lateralization and detection of low-frequency binaural stimuli: effects of distribution of internal delay. J Acoust Soc Am 100:2278–2288

    Article  Google Scholar 

  • Stern RM, Trahiotis C (1995) Models of binaural interaction. In: Moore BCJ (ed) Hearing. Academic Press, New York, pp 347–386

    Chapter  Google Scholar 

  • Stern RM, Zeiberg AS, Trahiotis C (1988) Lateralization of complex binaural stimuli: a weighted-image model. J Acoust Soc Am 84:156–165

    Article  CAS  PubMed  Google Scholar 

  • Stern R, Wang D, Brown G (2006) Binaural sound localization. In: Wang D, Brown G (eds) Computational auditory scene analysis. Wiley Interscience, Hoboken, pp 147–186

    Google Scholar 

  • Thompson SP (1877) On binaural audition. Phil Mag 4:274–276

    Article  Google Scholar 

  • Thompson SP (1882) On the function of the two ears in the perception of space. Phil Mag 13:406–416

    Article  Google Scholar 

  • Wolf S (1991) Untersuchungen zur Lokalisation von Schallquellen in geschlossenen Räumen. Ph.D. thesis, Ruhr-University Bochum, Bochum

    Google Scholar 

  • Zakarauskas P, Cynader M (1993) A computational theory of spectral cue localization. J Acoust Soc Am 94:1323–1331

    Article  Google Scholar 

  • Zurek PM (1987) The precedence effect. In: Yost WA, Gourevitch G (eds) Directional hearing. Springer, New York, pp 85–105

    Chapter  Google Scholar 

  • Zurek PM (1993) A note on onset effects in binaural hearing. J Acoust Soc Am 93:1200–1201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Braasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Braasch, J. (2014). Sound Localization in Mammals, Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_436-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_436-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Sound Localization in Mammals and Models
    Published:
    04 February 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_436-2

  2. Original

    Sound Localization in Mammals, Models
    Published:
    26 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_436-1