Skip to main content

Mechanotransduction, Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 203 Accesses

Synonyms

Models of mechanoreceptive afferents

Definition

Computational models of mechanotransduction describe how somatosensory receptors respond to stimuli applied to the skin. There are two distinct approaches to this problem: (1) modeling skin mechanics and transduction and (2) modeling single neuron spike generation. The first type of model describes how the skin is deformed by a tactile stimulus and how this deformation leads to a neuronal response. These models of skin mechanics and transduction can be further divided into two distinct subcategories: those based on continuum mechanics and those based on finite element analysis. The second type of model focuses on the biophysics of spike generation in single neurons. It usually consists of two stages: a transduction stage and an integrate-and-fire (IF) stage. The transduction stage describes the conversion from skin deformation into a current injection into the neuron, while the IF stage simulates the generation of action...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bolanowski SJ Jr, Zwislocki JJ (1984) Intensity and frequency characteristics of Pacinian corpuscles. II. Receptor potentials. J Neurophysiol 51:812–830

    PubMed  Google Scholar 

  • Dandekar K, Raju BI, Srinivasan MA (2003) 3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J Biomech Eng 125:682–691

    Article  PubMed  Google Scholar 

  • Dong Y, Mihalas S, Russell A, Etienne-Cummings R, Niebur E (2011) Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains. Neural Computation 23:2833-2867

    Google Scholar 

  • Dong Y, Mihalas S, Kim SS, Yoshioka T, Bensmaia SJ, Niebur E (2012) A simple model of mechanotransduction in primate glabrous skin. J Neurophysiol 109(5):1350-1359

    Google Scholar 

  • Freeman AW, Johnson KO (1982) A model accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey. J Physiol 323:43–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerling GJ, Thomas GW (2008) Fingerprint lines may not directly affect SA-I mechanoreceptor response. Somatosens Mot Res 25:61–76

    Article  PubMed  Google Scholar 

  • Gescheider GA, Bolanowski SJ, Verrillo RT (2004) Some characteristics of tactile channels. Behav Brain Res 148:35–40

    Article  CAS  PubMed  Google Scholar 

  • Hsiao S, Bensmaia S (2008) Coding of object shape and texture. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) Handbook of the senses somatosensation. Academic, Oxford, UK, pp 55–66

    Google Scholar 

  • Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck T, Liu SC, Dudek P, Hafliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saighi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73

    PubMed Central  PubMed  Google Scholar 

  • Johansson RS (1978) Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. J Physiol 281:101–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7:170–177

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Westling G (1987) Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res 66:141–154

    Article  CAS  PubMed  Google Scholar 

  • Johnson KO (1974) Reconstruction of population response to a vibratory stimulus in quickly adapting mechanoreceptive afferent fiber population innervating glabrous skin of the monkey. J Neurophysiol 37:48–72

    CAS  PubMed  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Sripati AP, Vogelstein RJ, Armiger RS, Russell AF, Bensmaia SJ (2009) Conveying tactile feedback in sensorized hand neuroprostheses using a biofidelic model of mechanotransduction. IEEE Trans Biomed Circuits Syst 3:398–404

    Article  Google Scholar 

  • Kim SS, Sripati AP, Bensmaia SJ (2010) Predicting the timing of spikes evoked by tactile stimulation of the hand. J Neurophysiol 104:1484–1496

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim SS, Mihalas S, Russell A, Yi D, Bensmaia SJ (2011) Does afferent heterogeneity matter in conveying tactile feedback through peripheral nerve stimulation? IEEE Trans Neural Syst Rehabil Eng 19:514–520

    Article  PubMed  Google Scholar 

  • Kim EK, Wellnitz SA, Bourdon SM, Lumpkin EA, Gerling GJ (2012) Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli. J Neuroeng Rehabil 9:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Lanir Y (1987) Skin mechanics. In: Skalak R, Chien S (eds) Handbook of bioengineering. McGraw-Hill, New York

    Google Scholar 

  • Larrabee WF Jr, Galt JA (1986) A finite element model of skin deformation. III. The finite element model. Laryngoscope 96:413–419

    PubMed  Google Scholar 

  • Loewenstein WR, Skalak R (1966) Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol 182:346–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mackevicius EL, Best MD, Saal HP, Bensmaia SJ (2012) Millisecond precision spike timing shapes tactile perception. J Neurosci 32:15309–15317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mihalas S, Niebur E (2009) A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput 21:704–718

    Article  PubMed Central  PubMed  Google Scholar 

  • Muniak MA, Ray S, Hsiao SS, Dammann JF, Bensmaia SJ (2007) The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J Neurosci 27:11687–11699

    Article  CAS  PubMed  Google Scholar 

  • Oomens CW, van Campen DH, Grootenboer HJ (1987) A mixture approach to the mechanics of skin. J Biomech 20:877–885

    Article  CAS  PubMed  Google Scholar 

  • Pare M, Carnahan H, Smith AM (2002) Magnitude estimation of tangential force applied to the fingerpad. Exp Brain Res 142:342–348

    Article  PubMed  Google Scholar 

  • Phillips JR, Johnson KO (1981) Tactile spatial resolution: III. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. J Neurophysiol 46:1204–1225

    CAS  PubMed  Google Scholar 

  • Phillips JR, Johnson KO, Hsiao SS (1988) Spatial pattern representation and transformation in monkey somatosensory cortex. Proc Natl Acad Sci U S A 85:1317–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pubols BH Jr (1980) On- versus off-responses of raccoon glabrous skin rapidly adapting cutaneous mechanoreceptors. J Neurophysiol 43:1558–1570

    PubMed  Google Scholar 

  • Russell AF, Armiger RS, Vogelstein RJ, Bensmaia SJ, Etienne-Cummings R (2009) Real-time implementation of biofidelic SA1 model for tactile feedback. In: Engineering in Medicine and Biology Society, 2009 EMBC 2009 annual international conference of the IEEE, Minneapolis, Minnesota, USA, pp 185–188

    Google Scholar 

  • Srinivasan MA, Whitehouse JM, LaMotte RH (1990) Tactile detection of slip: surface microgeometry and peripheral neural codes. J Neurophysiol 63:1323–1332

    CAS  PubMed  Google Scholar 

  • Sripati AP, Bensmaia SJ, Johnson KO (2006) A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J Neurophysiol 95:3852–3864

    Article  PubMed Central  PubMed  Google Scholar 

  • Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB (1968) The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31:301–334

    CAS  PubMed  Google Scholar 

  • Timoshenko S, Goodier JN (1969) Theory of elasticity. McGraw-Hill, New York

    Google Scholar 

  • Whitsel BL, Kelly EF, Delemos KA, Xu M, Quibrera PM (2000) Stability of rapidly adapting afferent entrainment vs responsivity. Somatosens Mot Res 17:13–31

    Article  CAS  PubMed  Google Scholar 

  • Wu JZ, Dong RG, Rakheja S, Schopper AW, Smutz WP (2004) A structural fingertip model for simulating of the biomechanics of tactile sensation. Med Eng Phys 26:165–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Kim, S.S. (2013). Mechanotransduction, Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_380-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_380-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics