Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Computational Models Supporting Parameter Finding for Deep Brain Stimulation

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_367-1


Deep brain stimulation is a surgical therapy involving electrical stimulation of the brain via chronically implanted electrodes.

Once implanted, there are a number of stimulation parameters which must be set by the clinician in order to suppress the pathological symptoms, while not inducing any unwanted side effects.

Computational models can be used to estimate the optimal parameter settings for DBS to aid this process.

Detailed Description

Deep Brain Stimulation

Over 20 years ago (Benabid et al. 1987), deep brain stimulation (DBS) was introduced as a clinical therapy for a number of neurological and more recently psychological disorders. The treatment involves chronic electrical stimulation via quadripolar electrodes implanted into various regions of the human brain in a disorder-specific manner. Most commonly, DBS is used to treat a range of movement disorders such as essential tremor, Parkinson’s disease, and dystonia (Vidailhet et al. 2005; Deuschl et al. 2006; Kupsch...


Deep Brain Stimulation Essential Tremor Neuron Model Finite Element Method Model Optimal Parameter Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Benabid AL (2007) What the future holds for deep brain stimulation. Expert Rev Med Devices 4(6):895–903PubMedCrossRefGoogle Scholar
  2. Benabid AL, Pollak P et al (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1–6):344–346PubMedGoogle Scholar
  3. Butson CR, McIntyre CC (2007) Differences among implanted pulse generator waveforms cause variations in the neural response to deep brain stimulation. Clin Neurophysiol 118(8):1889–1894PubMedCentralPubMedCrossRefGoogle Scholar
  4. Butson CR, Cooper SE et al (2011) Probabilistic analysis of activation volumes generated during deep brain stimulation. Neuroimage 54(3):2096–2104PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC (2010) Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul 3(2):65–67PubMedCentralPubMedCrossRefGoogle Scholar
  6. Deuschl G, Schade-Brittinger C et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355(9):896–908PubMedCrossRefGoogle Scholar
  7. Frankemolle A, Wu J, Noecker AM, Voelcker-Rehage C, Ho JC, Vitek JL, McIntyre CC, Alberts JL (2010) Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain 133(3):746–761PubMedCentralPubMedCrossRefGoogle Scholar
  8. Kringelbach ML, Jenkinson N et al (2007) Translational principles of deep brain stimulation. Nat Rev Neurosci 8(8):623–635PubMedCrossRefGoogle Scholar
  9. Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115(11):2431–2441PubMedCrossRefGoogle Scholar
  10. Kupsch A, Benecke R et al (2006) Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 355(19):1978–1990PubMedCrossRefGoogle Scholar
  11. Limousin P, Speelman JD et al (1999) Multicentre European study of thalamic stimulation in Parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66(3):289–296PubMedCentralPubMedCrossRefGoogle Scholar
  12. Miocinovic S, Lempka SF et al (2009) Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 216(1):166–176PubMedCentralPubMedCrossRefGoogle Scholar
  13. Moro E, Esselink RJ et al (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59(5):706–713PubMedCrossRefGoogle Scholar
  14. Rizzone M, Lanotte M et al (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71(2):215–219PubMedCentralPubMedCrossRefGoogle Scholar
  15. Vidailhet M, Vercueil L et al (2005) Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352(5):459–467PubMedCrossRefGoogle Scholar
  16. Wei XF, Grill WM (2005) Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. J Neural Eng 2(4):139–147PubMedCrossRefGoogle Scholar
  17. Yousif N, Liu X (2009) Investigating the depth electrode–brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution. J Neurosci Methods 184(1):142–151PubMedCentralPubMedCrossRefGoogle Scholar
  18. Yousif N, Purswani N et al (2010) Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study. J Neurosci Methods 188(1):105–112PubMedCrossRefGoogle Scholar
  19. Yousif N, Borisyuk R et al (2012a) Spatiotemporal visualization of deep brain stimulation-induced effects in the subthalamic nucleus. Eur J Neurosci 36(2):2252–2259PubMedCrossRefGoogle Scholar
  20. Yousif N, Pavese N et al. (2012) Reversing the polarity of bipolar stimulation in deep brain stimulation for essential tremor: a theoretical explanation for a useful clinical intervention. Neurocase 20(1):10–17PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Brain SciencesImperial College LondonLondonUK