Skip to main content

Receptive Field Modeling

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 471 Accesses

Synonyms

Neural Development; RF Modeling

Definition

The mathematical modeling of properties of sensory neurons, specifically relating to the patterns that elicit strong neuronal responses.

Detailed Description

The term receptive field (RF) refers to any of the following, depending on the context:

  1. 1.

    The sensory area over which sensory neurons give strong responses (e.g., portion of the visual field for visual neurons, frequency range for auditory neurons, etc.)

  2. 2.

    The input patterns that elicit those strong responses

  3. 3.

    The pattern of strong and weak synaptic strengths that results in the strong responses to the specific patterns

  4. 4.

    The spatiotemporal response properties of the sensory neurons, often referred to as a spatiotemporal receptive field

Modeling refers to the mathematicalmodeling of the response properties of the neuron or the development of the pattern of synaptic strengths and/or the neural dynamics that give rise to those response properties. Thus, the models are often...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2):284–299

    Article  PubMed  CAS  Google Scholar 

  • Alonso J-M, Chen Y (2009) Receptive field. Scholarpedia 4(1):5393

    Article  Google Scholar 

  • Bear MF, Connors BW, Paradiso MA (2007) Neuroscience. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    PubMed  CAS  Google Scholar 

  • Blais BS, Cooper L (2008) BCM theory. Scholarpedia 3(3):1570

    Article  Google Scholar 

  • Blais BS, Intrator N, Shouval H, Cooper LN (1998) Receptive field formation in natural scene environments: comparison of single cell learning rules. Neural Comput 10(7):1797–1813

    Article  PubMed  Google Scholar 

  • Blais B, Cooper LN, Shouval H (2000) Formation of direction selectivity in natural scene environments. Neural Comput 12(5):1057–1066

    Google Scholar 

  • Cooper LN, Bear MF (2012) The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci 13(11):798–810

    Article  PubMed  CAS  Google Scholar 

  • Cooper LN, Intrator N, Blais BS, Shouval HZ (2004) Theory of cortical plasticity. World Scientific, River Edge

    Book  Google Scholar 

  • Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187(3):517–552

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finn IM, Ferster D (2007) Computational diversity in complex cells of cat primary visual cortex. J Neurosci 27(36):9638–9648

    Article  PubMed  CAS  Google Scholar 

  • Gjorgjieva J, Clopath C, Audet J, Pfister J (2011) A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proc Natl Acad Sci 108(48):19383–19388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hyvärinen A (2010) Statistical models of natural images and cortical visual representation. Top Cognit Sci 2(2):251–264

    Article  Google Scholar 

  • Hyvärinen A, Hoyer PO, Inki M (2001a) Topographic independent component analysis. Neural Comput 13(7):1527–1558

    Article  PubMed  Google Scholar 

  • Hyvärinen A, Karhunen J, Oja E (2001b) Independent component analysis, vol 26. Wiley-Interscience, New York

    Book  Google Scholar 

  • Hyvärinen A, Hurri J, Hoyer P (2009) Natural image statistics: a probabilistic approach to early computational vision, vol 39. Springer, New York

    Google Scholar 

  • Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1187–1258

    PubMed  CAS  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, vol 30. Springer, New York

    Google Scholar 

  • Lee H, Ekanadham C, Ng A (2007) Sparse deep belief net model for visual area V2. In: Advances in neural information processing systems. Platt JC, Koller D, Singer Y and Roweis ST. Curran Associates, Inc., Red Hook, NY. pp 873–880

    Google Scholar 

  • Olshausen BA, Field DJ (1996) Emergence of simple cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609

    Article  PubMed  CAS  Google Scholar 

  • Rao R, Olshausen B, Lewicki M (2002) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge, MA

    Google Scholar 

  • Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5(12):583–601

    Article  PubMed  CAS  Google Scholar 

  • Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque V1 receptive fields. Neuron 46(6):945–956

    Article  PubMed  CAS  Google Scholar 

  • Saul AB, Humphrey AL (1990) Spatial and temporal properties of lagged and nonlagged cells in the cat lateral geniculate nucleus. J Neurophysiol 68:1190–1208

    Google Scholar 

  • Saxe A, Bhand M, Mudur R, Suresh B, Ng A (2011) Unsupervised learning models of primary cortical receptive fields and receptive field plasticity. In: Advances in neural information processing systems. Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F and Weinberger KQ. Curran Associates, Inc., Red Hook, NY. pp 1971–1979

    Google Scholar 

  • Shouval HZ, Goldberg DH, Jones JP, Beckerman M, Cooper LN (2000) Structured long-range connections can provide a scaffold for orientation maps. J Neurosci, 20(3):1119–1128

    Google Scholar 

  • Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439(7079):978–982

    Article  PubMed  CAS  Google Scholar 

  • Stork DG, Wilson HR (1990) Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? JOSA A 7(8):1362–1373

    Article  CAS  Google Scholar 

  • van Hateren J, Ruderman DL (1998) Independent component analysis of natural image sequences yields spatiotemporal filters similar to simple cells in primary visual cortex. Proc R Soc Lond B 265:2315–2320

    Article  Google Scholar 

  • Wolfe J, Palmer L (1998) Temporal diversity in the lateral geniculate nucleus of cat. Vis Neurosci 15(04):653–675

    Article  PubMed  CAS  Google Scholar 

  • Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22(1):29–47

    Article  PubMed  CAS  Google Scholar 

  • Yeung LC, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci U S A 101(41):14943–14948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Blais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Blais, B. (2014). Receptive Field Modeling. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_360-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_360-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Receptive Field Modeling
    Published:
    28 July 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_360-2

  2. Original

    Receptive Field Modelling
    Published:
    22 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_360-1