Skip to main content

Ionotropic Receptors Dynamics, Conductance Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 211 Accesses

Definition

Ionotropic receptors are an ion channel that opens upon binding of ligand molecules such as neurotransmitters. In addition, receptors may transition into desensitized, nonconducting states. These state transitions can be described with kinetic models, which replicate the time course of the resulting gating and corresponding conductance changes. Such models are particularly useful to simulate the postsynaptic conductance caused by neurotransmitter release during synaptic transmission.

Detailed Description

The temporal dynamics of synaptic transmission strongly depends on the kinetics of postsynaptic neurotransmitter receptors. Binding of transmitter molecules to ionotropic receptors causes a conformational change of the protein that opens an ion channel, which in turn gives rise to a membrane conductance change (Hille 2001). The observation of discrete open and closed states in single-channel recordings has supported the notion that a receptor protein functions by traversing...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Colquhoun D, Hawkes AG (1981) On the stochastic properties of single ion channels. Proc R Soc Lond B 211(1183):205–235

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1(3):195–230

    Article  CAS  PubMed  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models: an introduction. Cambridge University Press, New York

    Book  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes 3rd edn, Vol. 507. Sinauer Associates, Sunderland: Sinauer

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182

    CAS  PubMed  Google Scholar 

  • Jones MV, Westbrook GL (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19(3):96–101

    Article  CAS  PubMed  Google Scholar 

  • Neher E (1992) Ion channels for communication between and within cells. Science 256(5056):498–502

    Article  CAS  PubMed  Google Scholar 

  • Postlethwaite M, Hennig MH, Steinert JR, Graham BP, Forsythe ID (2007) Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of held. J Physiol 579(Pt 1):69–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30(5):1138–1168

    CAS  PubMed  Google Scholar 

  • Robert A, Howe JR (2003) How AMPA receptor desensitization depends on receptor occupancy. J Neurosci 23(3):847–858

    CAS  PubMed  Google Scholar 

  • Trussell LO, Thio LL, Zorumski CF, Fischbach GD (1988) Rapid desensitization of glutamate receptors in vertebrate central neurons. Proc Natl Acad Sci U S A 85(8):2834–2838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong AYC, Graham BP, Billups B, Forsythe ID (2003) Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J Neurosci 23(12):4868–4877

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias H. Hennig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hennig, M.H. (2014). Ionotropic Receptors Dynamics, Conductance Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_349-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_349-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics