Skip to main content

Target Selection vs. Response Selection

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Target selection refers to the process of selecting a single object from a field of multiple objects as the goal of a movement. It can also be used to refer to the deployment of covert attention to a selected object, even when an overt movement is not ultimately made. For overt actions, target selection specifies the movement goal (or end point), but not necessarily the effector that will be used or the trajectory that will be taken to reach the goal. In contrast, response selection is the process of choosing the appropriate action to take in response to a given stimulus. It is the intermediate process occurring between discrimination of a stimulus and planning of an action and usually involves a learned stimulus-to-response (S-R) mapping. For example, when driving a car toward an intersection, the usual response to a red traffic light (stimulus) is to press the brake pedal in order to stop the car (response).

Detailed Description

Target Selection

Natural environments are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bunge SA, Hazeltine E, Scanlon MD, Rosen AC, Gabrieli JD (2002) Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage 17:1562–1571

    Article  PubMed  Google Scholar 

  • Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298

    Article  CAS  PubMed  Google Scholar 

  • Fitts PH, Seeger CM (1953) S–R compatibility: spatial characteristics of stimulus and response codes. J Exp Psychol 46:199–210

    Article  CAS  PubMed  Google Scholar 

  • Hick WE (1952) On the rate of gain of information. Q J Exp Psychol 4:11–26

    Article  Google Scholar 

  • Hoshi E, Tanji J (2007) Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr Opin Neurobiol 17:234–242

    Article  CAS  PubMed  Google Scholar 

  • Itti L, Koch C (2001) Computational modeling of visual attention. Nat Rev Neurosci 2:194–203

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    CAS  PubMed  Google Scholar 

  • Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap: cognitive basis for stimulus – response compatibility – a model and taxonomy. Psychol Rev 97:253–270

    Article  CAS  PubMed  Google Scholar 

  • Krauzlis RJ, Lovejoy LP, Zénon A (2013) Superior colliculus and visual spatial attention. Annu Rev Neurosci 36:165–182

    Article  CAS  PubMed  Google Scholar 

  • McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    Article  CAS  PubMed  Google Scholar 

  • Pashler H (1994) Dual-task interference in simple tasks: data and theory. Psychol Bull 116:220–244

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417

    Article  CAS  PubMed  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259

    Article  CAS  PubMed  Google Scholar 

  • Scherberger H, Andersen RA (2007) Target selection signals for arm reaching in the posterior parietal cortex. J Neurosci 27:2001–2012

    Article  CAS  PubMed  Google Scholar 

  • Schumacher EH, Jiang Y (2003) Neural mechanisms for response selection: representation specific or modality independent? J Cogn Neurosci 15:1077–1079

    Article  PubMed  Google Scholar 

  • Shires J, Joshi S, Basso MA (2010) Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr Opin Neurobiol 20:717–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song JH, Rafal RD, McPeek RM (2011) Deficits in reach target selection during inactivation of the midbrain superior colliculus. Proc Natl Acad Sci U S A 108:1433–1440

    Article  Google Scholar 

  • Wilke M, Turchi J, Smith K, Mishkin M, Leopold DA (2010) Pulvinar inactivation disrupts selection of movement plans. J Neurosci 30:8650–8659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolfe JM (1994) Guided search 2.0: a revised model of visual search. Psychon B Rev 1:202–238

    Article  CAS  Google Scholar 

  • Zelinsky GJ (2008) A theory of eye movements during target acquisition. Psychol Rev 115:787–835

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert McPeek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

McPeek, R. (2014). Target Selection vs. Response Selection. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_320-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_320-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics