Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Slow Oscillations: Physiology

  • Maria Victoria Sanchez-VivesEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_308-1



Slow oscillations are the coordinated activity of large populations of neurons consisting of an alternation of active periods (Up states) and silent periods (Down states). These oscillations occur with a slow frequency (≤ 1 Hz) in the corticothalamocortical network during slow-wave sleep and deep anesthesia, and they spontaneously occur also in cortical slices. This rhythmic activity emerges in the cortical network when there are no other driving inputs, and it can be considered its default activity. During the active periods, or Up states, neocortical neurons (both excitatory and inhibitory) are depolarized, receive barrages of synaptic inputs, and fire action potentials. During Down states neurons remain hyperpolarized and the synaptic activity is almost nonexistent. This “on-and-off” synaptic activity results in a bimodal distribution of the membrane potential values, an intracellular signature of slow oscillations. During the...


Propagation Speed Cortical Network Cortical Slice Slow Oscillation Gamma Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22:8691–8704PubMedGoogle Scholar
  2. Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, Tucci V, De Pietri TD, Fellin T (2012) Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 16:227–234CrossRefGoogle Scholar
  3. Brumberg JC, Sanchez-Vives MV, McCormick DA (2000) Waking up the sleeping slice. Proc Soc Neurosci 26:1966Google Scholar
  4. Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513(Pt 1):117–126PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chauvette S, Volgushev M, Timofeev I (2010) Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex 20(11):2660–2674PubMedCentralPubMedCrossRefGoogle Scholar
  6. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707–2725PubMedCrossRefGoogle Scholar
  7. Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, Sanchez-Vives MV (2008) Spontaneous high-frequency (10–80 Hz) oscillations during up states in the cerebral cortex in vitro. J Neurosci 28:13828–13844PubMedCrossRefGoogle Scholar
  8. Compte A, Reig R, Sanchez-Vives MV (2009) Timing excitation and inhibition in the cortical network. In: Josic K, Rubin J, Matias M, Romo R (eds) Coherent behavior in neuronal networks, vol 3. Springer, New YorkGoogle Scholar
  9. Contreras D, Timofeev I, Steriade M (1996) Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol 494(Pt 1):251–264PubMedCentralPubMedGoogle Scholar
  10. Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17PubMedCentralPubMedCrossRefGoogle Scholar
  11. Csercsa R, Dombovari B, Fabo D, Wittner L, Eross L, Entz L, Solyom A, Rasonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halasz P, Freund TF, Magloczky Z, Cash SS, Papp L, Karmos G, Halgren E, Ulbert I (2010) Laminar analysis of slow wave activity in humans. Brain 133:2814–2829PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cunningham MO, Davies CH, Buhl EH, Kopell N, Whittington MA (2003) Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. J Neurosci 23:9761–9769PubMedGoogle Scholar
  13. Cunningham MO, Pervouchine DD, Racca C, Kopell NJ, Davies CH, Jones RS, Traub RD, Whittington MA (2006) Neuronal metabolism governs cortical network response state. Proc Natl Acad Sci U S A 103:5597–5601PubMedCentralPubMedCrossRefGoogle Scholar
  14. David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, Renger JJ, Lambert RC, Leresche N, Crunelli V (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci 33:19599–19610PubMedCentralPubMedCrossRefGoogle Scholar
  15. Frohlich F, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2006) Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J Neurosci 26:6153–6162PubMedCentralPubMedCrossRefGoogle Scholar
  16. Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545PubMedCrossRefGoogle Scholar
  17. Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435PubMedCrossRefGoogle Scholar
  18. Le Bon-Jego M, Yuste R (2007) Persistently active, pacemaker-like neurons in neocortex. Front Neurosci 1:123–129PubMedCentralPubMedCrossRefGoogle Scholar
  19. Mann EO, Kohl MM, Paulsen O (2009) Distinct roles of GABA(A) and GABA(B) receptors in balancing and terminating persistent cortical activity. J Neurosci 29:7513–7518PubMedCrossRefGoogle Scholar
  20. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24:6862–6870PubMedCrossRefGoogle Scholar
  21. McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13:1219–1231PubMedCrossRefGoogle Scholar
  22. Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535–537PubMedCrossRefGoogle Scholar
  23. Reig R, Mattia M, Compte A, Belmonte C, Sanchez-Vives MV (2010) Temperature modulation of slow and fast cortical rhythms. J Neurophysiol 103:1253–1261PubMedCrossRefGoogle Scholar
  24. Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280–5290PubMedCrossRefGoogle Scholar
  25. Ruiz-Mejias M, Ciria-Suarez L, Mattia M, Sanchez-Vives MV (2011) Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. J Neurophysiol 106(6):2910–2921PubMedCrossRefGoogle Scholar
  26. Sakata S, Harris KD (2009) Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64:404–418PubMedCentralPubMedCrossRefGoogle Scholar
  27. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034PubMedCrossRefGoogle Scholar
  28. Sanchez-Vives MV, Descalzo VF, Reig R, Figueroa NA, Compte A, Gallego R (2008) Rhythmic spontaneous activity in the piriform cortex. Cereb Cortex 18:1179–1192PubMedCrossRefGoogle Scholar
  29. Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R (2011) Inhibitory modulation of cortical up states. J Neurophysiol 104:1314–1324CrossRefGoogle Scholar
  30. Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59:450–467PubMedGoogle Scholar
  31. Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423:288–293PubMedCrossRefGoogle Scholar
  32. Steriade M, Amzica F, Nunez A (1993a) Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J Neurophysiol 70:1385–1400PubMedGoogle Scholar
  33. Steriade M, Contreras D, Curro Dossi R, Nunez A (1993b) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284–3299PubMedGoogle Scholar
  34. Steriade M, Nunez A, Amzica F (1993c) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265PubMedGoogle Scholar
  35. Steriade M, Contreras D, Amzica F, Timofeev I (1996) Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci 16:2788–2808PubMedGoogle Scholar
  36. Stroh A, Adelsberger H, Groh A, Ruhlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth A (2013) Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77:1136–1150PubMedCrossRefGoogle Scholar
  37. Timofeev I, Steriade M (1996) Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76:4152–4168PubMedGoogle Scholar
  38. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199PubMedCrossRefGoogle Scholar
  39. Traub RD, Bibbig A, LeBeau FE, Cunningham MO, Whittington MA (2005) Persistent gamma oscillations in superficial layers of rat auditory neocortex: experiment and model. J Physiol 562:3–8PubMedCentralPubMedCrossRefGoogle Scholar
  40. Trevelyan AJ, Sussillo D, Yuste R (2007) Feedforward inhibition contributes to the control of epileptiform propagation speed. J Neurosci 27:3383–3387PubMedCrossRefGoogle Scholar
  41. Wester JC, Contreras D (2012) Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J Neurosci 32:5454–5471PubMedCentralPubMedCrossRefGoogle Scholar

Further Reading

  1. ScholarpediaGoogle Scholar
  2. Bazhenov M, Timofeev I (2006) Thalamocortical oscillations. Scholarpedia 1(6):1319CrossRefGoogle Scholar
  3. Okun M, Lampl I (2009) Balance of excitation and inhibition. Scholarpedia 4(8):7467CrossRefGoogle Scholar
  4. Wilson C (2008) Up and down states. Scholarpedia J 3(6):1410PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.ICREA and Systems NeuroscienceIDIBAPSBarcelonaSpain