Skip to main content

Wiring Principles, Optimization

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Definition

Wiring principles determine the topological and spatial layout of connections and nodes of neural networks. The organization of brain connectivity is subject to several, synergistic or conflicting, constraints, such as low metabolic cost, restrictions of white matter volume by the skull size, and high efficiency of signal processing as reflected in a small number of processing steps.

Detailed Description

Brain connectivity can be analyzed from the perspective of topological or spatial properties of the network. Traditionally, wiring principles have been discussed in the context of spatial properties of brain networks, that is, defined by the location of network nodes and the length of connections among them.

Wiring can be considered at the local scale, reflected by axons and dendrites between individual neurons, or at the global scale, by fiber tracts among brain regions. A lower bound for the wire length is the Euclidean distance between two connected network nodes,...

This is a preview of subscription content, log in via an institution.

References

  • Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci 103:4723–4728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Wang S, Hilgetag CC, Zhou C (2013) Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput Biol 9:e1002937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cherniak C (1992) Local optimization of neuron arbors. Biol Cybern 66:503–510

    Article  CAS  PubMed  Google Scholar 

  • Cherniak C (1994) Component placement optimization in the brain. J Neurosci 14:2418–2427

    CAS  PubMed  Google Scholar 

  • Cherniak C, Changizi M, Kang D (1999) Large-scale optimization of neuron arbors. Phys Rev E Stat Nonlinear Soft Matter Phys 59:6001–6009

    Article  CAS  Google Scholar 

  • Chklovskii DB (2004) Exact solution for the optimal neuronal layout problem. Neural Comput 16:2067–2078

    Article  PubMed  Google Scholar 

  • Chklovskii DB, Koulakov AA (2004) Maps in the brain: what can we learn from them? Annu Rev Neurosci 27:369–392

    Article  CAS  PubMed  Google Scholar 

  • Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347

    Article  CAS  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2:e22

    Article  PubMed Central  PubMed  Google Scholar 

  • Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity. Neuroinformatics 2:353–360

    Article  PubMed  Google Scholar 

  • Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57:892–907

    Article  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2004a) Modelling the development of cortical systems networks. Neurocomputing 58–60:297–302

    Article  Google Scholar 

  • Kaiser M, Hilgetag CC (2004b) Spatial growth of real-world networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69:036103

    Article  Google Scholar 

  • Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2:e95

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaiser M, Hilgetag CC (2007) Development of multi-cluster cortical networks by time windows for spatial growth. Neurocomputing 70:1829–1832

    Article  Google Scholar 

  • Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Fr Neuroinform 4:8

    Google Scholar 

  • Kaiser M, Hilgetag CC, van Ooyen A (2009) A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cereb Cortex 19:3001–3010

    Article  PubMed  Google Scholar 

  • Koch C (2004) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchronization? Neural Comput 7:469–485

    Article  PubMed  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks. Science 301:1870–1874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laughlin SB, de Ruyter Van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41

    Article  CAS  PubMed  Google Scholar 

  • Masuda N, Aihara K (2004) Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90:302–309

    Article  PubMed  Google Scholar 

  • Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Fr Neuroinform 3:37

    Google Scholar 

  • Murre JMJ, Sturdy DPF (1995) The connectivity of the brain: multi-level quantitative analysis. Biol Cybern 73:529–545

    Article  CAS  PubMed  Google Scholar 

  • Nisbach F, Kaiser M (2007) Developmental time windows for spatial growth generate multiple-cluster small-world networks. Eur Phys J B 58:185–191

    Article  CAS  Google Scholar 

  • Rivera-Alba M, Vitaladevuni SN, Mischenko Y, Lu Z, Takemura SY, Scheffer L, Meinertzhagen IA, Chklovskii DB, de Polavieja GG (2011) Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr Biol 21:2000–2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Tittgemeyer M, Knosche TR, Moran RJ, Friston KJ (2009) Tractography-based priors for dynamic causal models. Neuroimage 47:1628–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Swadlow HA (1991) Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties. J Neurophysiol 66:1392–1409

    CAS  PubMed  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  PubMed  Google Scholar 

  • Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vertes PE, Alexander-Bloch AF, Gogtay N, Giedd JN, Rapoport JL, Bullmore ET (2012) Simple models of human brain functional networks. Proc Natl Acad Sci 109:5868–5873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von der Malsburg C (1995) Binding in models of perception and brain function. Curr Opin Neurobiol 5:520–526

    Article  PubMed  Google Scholar 

  • von Neumann J (1958) The computer and the brain. Yale University Press, New Haven

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Wen Q, Chklovskii DB (2005) Segregation of the brain into gray and white matter: a design minimizing conduction delays. PLoS Comput Biol 1:e78

    Article  PubMed Central  PubMed  Google Scholar 

  • Wen Q, Chklovskii DB (2008) A cost-benefit analysis of neuronal morphology. J Neurophysiol 99:2320–2328

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kaiser, M., Hilgetag, C.C. (2014). Wiring Principles, Optimization. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_291-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_291-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Wiring Principles, Optimization
    Published:
    30 July 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_291-2

  2. Original

    Wiring Principles, Optimization
    Published:
    07 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_291-1