Skip to main content

Anatomy and Physiology of the Mammalian Auditory System

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 649 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A1:

Primary auditory cortex

AC:

Auditory cortex

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AN:

Auditory nerve

AVCN:

Anteroventral cochlear nucleus

CNC:

Cochlear nucleus complex

CNIC:

Central nucleus of the inferior colliculus

DAS:

Dorsal acoustic stria

DCIC:

Dorsal nucleus of the inferior colliculus

DCN:

Dorsal cochlear nucleus

DLL:

Lateral lemniscus dorsal nucleus

GABA:

γ-Aminobutyric acid

IAS:

Intermediate acoustic stria

IC:

Inferior colliculus

IHC:

Inner hair cell

LCIC:

Lateral cortex of the inferior colliculus

LOC:

Lateral olivocochlear neurons/system

LSO:

Lateral superior olive

MGB:

Medial geniculate body

MGD:

Dorsal division of the medial geniculate body

MGM:

Medial division of the medial geniculate body

MGV:

Ventral division of the medial geniculate body

MNTB:

Medial nucleus of the trapezoid body

MOC:

Medial olivocochlear neurons/system

MSO:

Medial superior olive

NLL:

Nuclei of the lateral lemniscus

NMDA:

N-Methyl-d-aspartate

OHC:

Outer hair cell

PO:

Periolivary nuclei

SOC:

Superior olivary complex

SPO:

Superior paraolivary nucleus

VAS:

Ventral acoustic stria

VCN:

Ventral cochlear nucleus

VLL:

Ventral nucleus of the lateral lemniscus

VNTB:

Ventral nucleus of the trapezoid body

References

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183:519–538

    CAS  PubMed  Google Scholar 

  • Adams JC (1983) Cytology of periolivary cells and the organization of their projections in the cat. J Comp Neurol 215:2752–2789

    Google Scholar 

  • Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of inferior colliculus, auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837–847

    CAS  PubMed  Google Scholar 

  • Anderson LA, Malmierca MS, Wallace MN, Palmer AR (2006) Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. Eur J Neurosci 24:491–498

    CAS  PubMed  Google Scholar 

  • Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12:2819–2837

    CAS  PubMed  Google Scholar 

  • Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81:1999–2016

    CAS  PubMed  Google Scholar 

  • Bartlett EL, Stark JM, Guillery RW, Smith PH (2000) Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100:811–828

    CAS  PubMed  Google Scholar 

  • Blaesse P, Ehrhardt S, Friauf E, Nothwang HG (2005) Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res 320:33–50

    CAS  PubMed  Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–300

    CAS  PubMed  Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Brown MC, Levine JL (2008) Dendrites of medial olivocochlear neurons in mouse. Neuroscience 154:147–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MC, Liberman MC, Benson TE, Ryugo DK (1988) Brainstem branches from olivocochlear axons in cats and rodents. J Comp Neurol 278:591–603

    CAS  PubMed  Google Scholar 

  • Burton H, Jones EG (1976) The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol 168:249–301

    CAS  PubMed  Google Scholar 

  • Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328:377–392

    CAS  PubMed  Google Scholar 

  • Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457–474

    PubMed  Google Scholar 

  • Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495:511–528

    PubMed Central  PubMed  Google Scholar 

  • Cant NB, Benson CG (2007) Multiple topographically organized projections connect the central nucleus of the inferior colliculus to the ventral division of the medial geniculate nucleus in the gerbil, Meriones unguiculatus. J Comp Neurol 503:432–453

    PubMed  Google Scholar 

  • Casseday JH, Fremouw T, Covey E (2002) The inferior colliculus, a hub for the central audiotory system. In: Oertel D, Popper AN, Fay RR (eds) Springer handbook of auditory research. Springer, New York

    Google Scholar 

  • Cotillon N, Nafati M, Edeline JM (1999) Characteristics of reliable tone-evoke oscillations in the rat thalamo-cortical auditory system. Hear Res 142:113–130

    Google Scholar 

  • Covey E, Casseday JH (1991) The monoaural nuclei of the lateral lemniscus in an echolocating bat, parallel pathways for analyzing temporal features of sound. J Neurosci 11:3456–3470

    CAS  PubMed  Google Scholar 

  • Dehmel S, Kopp-Scheinpflug C, Dörrscheidt GJ, Rübsamen R (2002) Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil. Hear Res 172:18–36

    PubMed  Google Scholar 

  • Doron NN, Ledoux JE (1999) Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol 412:383–409

    CAS  PubMed  Google Scholar 

  • Doucet JR, Ryugo DK (1997) Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. J Comp Neurol 385:245–264

    CAS  PubMed  Google Scholar 

  • Doucet JR, Ross AT, Gillespie MB, Ryugo DK (1999) Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. J Comp Neurol 408:515–531

    CAS  PubMed  Google Scholar 

  • Doucet JR, Molavi DL, Ryugo DK (2003) The source of corticocollicular and corticobulbar projections in area Te1 of the rat. Exp Brain Res 4:461–466

    Google Scholar 

  • Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative hearing, mammals. Springer, Berlin, pp 134–171

    Google Scholar 

  • Eggermont JJ (2001) Between sound and perception, reviewing the search for a neural code. Hear Res 157:1–42

    CAS  PubMed  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Fay RR, Popper AN (1994) Comparative hearing in mammals. In: Fay RR and Popper AN (Eds), Springer handbook of auditory research. Springer, New York

    Google Scholar 

  • Faye-Lund H (1985) The neocortical projection to the inferior colliculus in the albino rat. Anat Embryol (Berl) 173:53–70

    Google Scholar 

  • Faye-Lund H, Osen KK (1985) Anatomic of the inferior colliculus in rat. Anat Embryol 175:35–52

    Google Scholar 

  • Feliciano M, Potashner SJ (1995) Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J Neurochem 65:1348–1357

    CAS  PubMed  Google Scholar 

  • Friauf E (1993) Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats. J Comp Neurol 334:59–74

    Google Scholar 

  • Games KD, Winer JA (1988) Layer V in rat auditory cortex, projections to the inferior colliculus and contralateral cortex. Hear Res 34:1–25

    CAS  PubMed  Google Scholar 

  • Guinan JJ, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex, II. Locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166

    Google Scholar 

  • Hefti BJ, Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A)blockade. J Neurophysiol 83:2626–2638

    CAS  PubMed  Google Scholar 

  • Hefti BJ, Smith PH (2003) Distribution and kinetic properties of GABAergic inputs to layer V pyramidal cells in rat auditory cortex. J Assoc Res Otolaryngol 4:106–121

    PubMed Central  PubMed  Google Scholar 

  • Held H (1893) Die centralem Bahnen des Nervus acusticus bei der. Katz Arch Anat Abtheil 15:190–271

    Google Scholar 

  • Helfert RH, Aschoff A (1997) Superior olivary complex and nuclei of the lateral lemniscus. In: Ehret G, Romand R (eds) Anatomical and functional aspects of the cochlear nucleus. Oxford University Press, Oxford, pp 193–257

    Google Scholar 

  • Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304:103–122

    CAS  PubMed  Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) Springer handbook of auditory pathway, neurophysiology. Springer, New York, pp 153–231

    Google Scholar 

  • Ito T, Oliver DL (2012) Patterns of synaptic organization send different messages to the thalamus. Front Neural Circuits 6:48. doi:103389/fncir201200048

    PubMed Central  PubMed  Google Scholar 

  • Jones EG (2003) Chemically defined parallel pathways in the monkey auditory system. Ann N Y Acad Sci 999:218–233

    CAS  PubMed  Google Scholar 

  • Jones EG (2007) The thalamus, vol II, 2nd edn. Cambridge University Press, Cambridge, pp 875–923

    Google Scholar 

  • Joris PX, Smith PH, Yin TCT (1998) Coincidence detection in the auditory system, 50 years after Jeffress. Neuron 21:1235–1238

    CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol 3:73–85

    CAS  PubMed  Google Scholar 

  • Kasper EM, Larkman AU, Lubke J, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets. J Comp Neurol 339:459–474

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y (1993) Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. J Neurophysiol 69:416–431

    CAS  PubMed  Google Scholar 

  • Kelly JB, Caspary DM (2005) Pharmacology of the inferior colliculus. In: Winer JA, Schreiner C (eds) The inferior colliculus. Springer, New York, pp 248–281

    Google Scholar 

  • King AJ, Jiang ZD, Moore DR (1998) Auditory brainstem projections to the ferret superior colliculus: anatomical contribution to the neural coding of sound azimuth. J Comp Neurol 390:342–365

    CAS  PubMed  Google Scholar 

  • Kopp-Scheinpflug C, Tolnai S, Malmierca MS, Rübsamen R (2008) The medial nucleus of the trapezoid body: comparative physiology. Neuroscience 154:60–170

    Google Scholar 

  • Kulesza RJ Jr, Spirou GA, Berrebi AS (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 89:2299–2312

    PubMed  Google Scholar 

  • LeBeau FEN, Malmierca MS, Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABAA- and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci 21:7303–7312

    CAS  PubMed  Google Scholar 

  • Lee CC, Winer JA (2005) Principles governing auditory cortex connections. Cereb Cortex 15:1804–1814

    PubMed  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea, quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460

    CAS  PubMed  Google Scholar 

  • Llano DA, Sherman SM (2008) Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. J Comp Neurol 507:1209–1227

    PubMed  Google Scholar 

  • Llano DA, Sherman SM (2009) Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cereb Cortex 19:2810–2826

    PubMed Central  PubMed  Google Scholar 

  • Loftus B, Malmierca MS, Oliver DL (2008) The Cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience 154:196–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorente de Nó R (1981) The primary acoustic nuclei. Raven Press, New York

    Google Scholar 

  • Lu E, Llano DA, Sherman SM (2009) Different distributions of calbindin and calretinin immunostaining across the medial and dorsal divisions of the mouse medial geniculate body. Hear Res 257:16–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malmierca MS (2003) The structure and physiology of the rat auditory system: an overview. Int Rev Neurobiol 56:147–211

    PubMed  Google Scholar 

  • Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Moore DR (ed) The Oxford handbook of auditory science: the auditory brain. Oxford University Press, New York, pp 9–41

    Google Scholar 

  • Malmierca MS, Ryugo DK (2011) Descending connections of auditory cortex to the midbrain and brainstem. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, New York, pp 189–208

    Google Scholar 

  • Malmierca MS, Ryugo DK (2012) Auditory system. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Academic, Amsterdam, pp 607–645

    Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK, Karagülle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat, a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333:1–27

    CAS  PubMed  Google Scholar 

  • Malmierca MS, Rees A, LeBeau FEN, Bajaalie JG (1995) Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. J Comp Neurol 357:124–144

    CAS  PubMed  Google Scholar 

  • Malmierca MS, LeBeau FEN, Rees A (1996) The topographical organization of descending projections from the central nucleus of the inferior colliculus in guinea pig. Hear Res 93:167–180

    CAS  PubMed  Google Scholar 

  • Malmierca MS, Leergard TB, Bajo VM, Bjaalie JG (1998) Anatomic evidence of a 3-D mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. J Neurosci 19:10603–10618

    Google Scholar 

  • Malmierca MS, Merchán M, Henkel CK, Oliver DL (2002) Direct projections from the dorsal cochlear nucleus to the auditory thalamus in rat. J Neurosci 22:10891–10897

    CAS  PubMed  Google Scholar 

  • Malmierca MS, Saint Marie RL, Merchan MA, Oliver DL (2005) Laminar inputs from dorsal cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior colliculus: two patterns of convergence. Neuroscience 136:883–894

    CAS  PubMed  Google Scholar 

  • Malmierca MS, Izquierdo MA, Cristaudo S, Hernández O, Pérez-González D, Covey E, Oliver DL (2008) A discontinuous tonotopic organization in the inferior colliculus of the rat. J Neurosci 28:4767–4776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malmierca MS, Cristaudo S, Pérez-González D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meltzer NE, Ryugo DK (2006) Projections from auditory cortex to cochlear nucleus: a comparative analysis of rat and mouse. Anat Rec A Discov Mol Cell Evol Biol 288:397–408

    PubMed Central  PubMed  Google Scholar 

  • Merchán M, Aguilar LA, Lopez-Poveda EA, Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136:907–925

    PubMed  Google Scholar 

  • Moore JK, Osen KK (1979) The human cochlear nuclei. In: Creutzfeld O, Scheich H, Schreiner C (eds) Exp Brain Res, Suppementum II, pp 36–44

    Google Scholar 

  • Morest DK (1968) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9:288–311

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Osen KK, Dahl A-L, Friedrich VL Jr, Korte G (1980a) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J Neurocytol 9:537–570

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980b) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse. J Comp Neurol 191:581–606

    CAS  PubMed  Google Scholar 

  • Oertel D (1999) The role of timing in the brain stem auditory nuclei of vertebrates. Annu Rev Physiol 61:497–519

    CAS  PubMed  Google Scholar 

  • Oertel D, Young ED (2004) What's a cerebellar circuit doing in the auditory system? Trends Neurosci 27:104–110

    CAS  PubMed  Google Scholar 

  • Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 295:136–154

    CAS  PubMed  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264

    CAS  PubMed  Google Scholar 

  • Oliver DL, Ostapoff EM, Beckius GE (1999) Direct innervation of identified tectothalamic neurons in the inferior colliculus by axons from the cochlear nucleus. Neuroscience 93:643–658

    CAS  PubMed  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–483

    CAS  PubMed  Google Scholar 

  • Osen KK, Mugnaini E, Dahl AL, Christiansen AH (1984) Histochemical localization of acetylcholinesterase in the cochlear and superior olivary nuclei. A reappraisal with emphasis on the cochlear granule cell system. Arch Ital Biol 122:169–212

    CAS  PubMed  Google Scholar 

  • Osen KK, Ottersen OP, Størm-Mathisen J (1990) Colocalization of glicine-like and GABA-like inmunoreactivities, a semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat. In: Ottersen OP, Størm-Mathissen J (eds) Glycine neurotransmission. Wiley, Chichester, pp 417–451

    Google Scholar 

  • Ota Y, Oliver DL, Dolan DF (2004) Frequency-specific effects on cochlear responses during activation of the inferior colliculus in the Guinea pig. J Neurophysiol 91:2185–2193

    CAS  PubMed  Google Scholar 

  • Palombi PS, Caspary DM (1996) Responses of young and aged Fischer 344 rat inferior colliculus neurons to binaural tonal stimuli. Hear Res 100:59–67

    CAS  PubMed  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17:3766–3777

    CAS  PubMed  Google Scholar 

  • Rajan R (1990) Electrical stimulation of the inferior colliculus at low rates protects the cochlea from auditory desensitization. Brain Res 506:192–204

    CAS  PubMed  Google Scholar 

  • Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 99:61–74

    Google Scholar 

  • Rietzel HJ, Friauf E (1998) Neuron types in the rat lateral superior olive and developmental changes in the complexity of their dendritic arbors. J Comp Neurol 390:20–40

    CAS  PubMed  Google Scholar 

  • Riquelme R, Saldaña E, Osen KK, Ottersen OP, Merchán MA (2001) Colocalization of GABA and Glycine in the ventral nucleus of the lateral lemniscus in rat, an in situ hybridization and semiquantitative inmunocytochemical study. J Comp Neurol 432:409–424

    CAS  PubMed  Google Scholar 

  • Rubio ME, Juiz JM (2004) Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus. J Comp Neurol 477:253–272

    CAS  PubMed  Google Scholar 

  • Rubio ME, Gudsnuk KA, Smith Y, Ryugo DK (2008) Revealing the molecular layer of the primate dorsal cochlear nucleus. Neuroscience 154:99–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryugo DK, Parks TN (2003) Primary innervation of the avian and mammalian cochlear nucleus. Brain Res Bull 60:435–456

    PubMed  Google Scholar 

  • Safieddine S, Eybalin M (1992) Triple immunofluorescence evidence for the coexistence of acetylcholine, enkephalins, and calcitonin gene-related peptide within efferent olivocochlear neurons in rats and guinea-pigs. Eur J Neurosci 4:981–992

    PubMed  Google Scholar 

  • Safieddine S, Prior AM, Eybalin M (1997) Choline acetyltransferase, glutamate decarboxylase, tyrosine hydroxylase, calcitonin gene-related peptide and opioid peptides coexist in lateral efferent neurons of rat and guinea-pig. Eur J Neurosci 9:356–367

    CAS  PubMed  Google Scholar 

  • Saldaña E, Merchán MA (1992) Intrinsic and commissural connections of the rat inferior colliculus. J Comp Neurol 319:417–437

    PubMed  Google Scholar 

  • Saldaña E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15–40

    PubMed  Google Scholar 

  • Schofield BR (1995) Projections from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs. J Comp Neurol 360:135–149

    CAS  PubMed  Google Scholar 

  • Schofield BR, Cant NB (1991) Organization of the superior olivary complex in the guinea pig. I. Cytoarchitecture, cytochrome oxidase histochemistry, and dendritic morphology. J Comp Neurol 314:645–670

    CAS  PubMed  Google Scholar 

  • Schreiner CE, Langner G (1988) Coding of temporal patterns in the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function. Wiley, New York, pp 337–340

    Google Scholar 

  • Schreiner CE, Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    CAS  PubMed  Google Scholar 

  • Sinex DG, Lopez DE, Warr WB (2001) Electrophysiological responses of cochlear root neurons. Hear Res 370:1–11

    Google Scholar 

  • Sivaramakrishnan S, Oliver DL (2001) Distinct K+ currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877

    CAS  PubMed  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The cochlea, Springer handbook of auditory research. Springer, New York, pp 44–129

    Google Scholar 

  • Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiol 73:1653–1667

    CAS  PubMed  Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282:595–616

    CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TCT (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407

    CAS  PubMed  Google Scholar 

  • Sommer I, Lingenhöhl K, Friauf E (1993) Principal cells of the rat medial nucleus of the trapezoid body, an intracellular in vivo study of their physiology and morphology. Exp Brain Res 95:223–239

    CAS  PubMed  Google Scholar 

  • Taranda J, Maison SF, Ballestero JA, Katz E, Savino J, Vetter DE, Boulter J, Liberman MC, Fuchs PA, Elgoyhen AB (2009) A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection. PLoS Biol. doi: 101371/journalpbio1000018

    PubMed Central  PubMed  Google Scholar 

  • Thompson AM, Schofield BR (2000) Afferent projections of the superior olivary complex. Microsc Res Tech 51:330–354

    CAS  PubMed  Google Scholar 

  • Vetter DE, Mugnaini E (1992) Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat Embryol 185:1–16

    CAS  PubMed  Google Scholar 

  • Vetter DE, Saldaña E, Mugnaini E (1993) Input from the inferior colliculus to medial olivocochlear neurons in the rat, a double label study with PHA-L and cholera toxin. Hear Res 70:173–186

    CAS  PubMed  Google Scholar 

  • Wallace MN, Harper MS (1997) Callosal connections of the ferret primary auditory cortex. Exp Brain Res 116:367–374

    CAS  PubMed  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway, neuroanatomy. Springer, Berlin, pp 410–448

    Google Scholar 

  • Warr WB, Boche JB, Neely ST (1997) Efferent innervation of the inner hair cell region, origins and terminations of two lateral olivocochlear systems. Hear Res 108:89–111

    CAS  PubMed  Google Scholar 

  • Weedman DL, Ryugo DK (1996a) Projections from auditory cortex to the cochlear nucleus in rats, synapses on granule cell dendrites. J Comp Neurol 371:311–324

    CAS  PubMed  Google Scholar 

  • Weedman DL, Ryugo DK (1996b) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706:97–102

    CAS  PubMed  Google Scholar 

  • Weedman DL, Pongstaporn T, Ryugo DK (1996) Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: mossy fiber endings and their targets. J Comp Neurol 369:345–360

    CAS  PubMed  Google Scholar 

  • White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219:203–214

    CAS  PubMed  Google Scholar 

  • Wickesberg RE, Oertel D (1988) Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J Comp Neurol 268:389–399

    CAS  PubMed  Google Scholar 

  • Winer JA (1985) The medial geniculate body of the cat. Adv Anat Embryol Cell Biol 86:1–97

    CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway, neuroanatomy. Springer, New York, pp 222–409

    Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212:1–8

    PubMed  Google Scholar 

  • Winer JA, Larue DT (1988) Anatomy of glutamic acid decarboxylase immunoreactive neurons and axons in the rat medial geniculate body. J Comp Neurol 278:47–68

    CAS  PubMed  Google Scholar 

  • Winer JA, Lee CC (2007) The distributed auditory cortex. Hear Res 229:3–13

    PubMed Central  PubMed  Google Scholar 

  • Winer JA, Morest DK (1983) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3:2629–2651

    CAS  PubMed  Google Scholar 

  • Winer JA, Schreiner CE (2011) The auditory cortex. Springer, New York

    Google Scholar 

  • Winer JA, Kelly JB, Larue DT (1999) Neural architecture of the rat medial geniculate body. Hear Res 31:19–41

    Google Scholar 

  • Wu SH (1999) Physiological properties of neurons in the ventral nucleus of the lateral lemniscus of the rat, intrinsic membrane properties and synaptic responses. J Neurophysiol 81:2862–2874

    CAS  PubMed  Google Scholar 

  • Ye Y, Machado DG, Kim DO (2000) Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. J Comp Neurol 420:127–138

    CAS  PubMed  Google Scholar 

  • Young ED, Davis KA (2002) Circuitry and function of the dorsal cochlear nucleus, chapter 5. In: Oertel D, Fay RR, Popper AN (eds) Springer handbook of auditory research. Integrative functions in the mammalian auditory pathway, vol 15. Springer, New York, pp 160–206

    Google Scholar 

  • Young ED, Shofner WP, White JA, Robert JM, Voigt HF (1988) Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function, neurobiological bases of hearing. Wiley, New York, pp 277–312

    Google Scholar 

  • Yu XJ, Xu XX, He S, He J (2009) Change detection by thalamic reticular neurons. Nat Neurosci 12:1165–1170

    CAS  PubMed  Google Scholar 

  • Zhang H, Kelly JB (2006a) Responses of neurons in the rat’s ventral nucleus of the lateral lemniscus to monaural and binaural tone bursts. J Neurophysiol 95:2501–2512

    PubMed  Google Scholar 

  • Zhang H, Kelly JB (2006b) Responses of neurons in the rat’s ventral nucleus of the lateral lemniscus to amplitude-modulated tones. J Neurophysiol 96:2905–2914

    PubMed  Google Scholar 

  • Zhang Y, Wu SH (2000) Long-term potentiation in the inferior colliculus studied in rat brain slice. Hear Res 1(47):92–103

    Google Scholar 

  • Zhao M, Wu SH (2001) Morphology and physiology of neurons in the ventral nucleus of the lateral lemniscus in rat brain slices. J Comp Neurol 433:255–271

    CAS  PubMed  Google Scholar 

  • Zhou J, Shore S (2006) Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the guinea pig. J Comp Neurol 495:100–112

    PubMed  Google Scholar 

Download references

Acknowledgments

I am most thankful and indebted to Dr. Nell Cant for her suggestions and constructive criticisms on a previous version of the manuscript.

Financial support was provided by Spanish MINECO (BFU2009-07286) and EU (EUI2009-04083, in the framework of the ERA-NET Network of European Funding for Neuroscience Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel S. Malmierca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Malmierca, M.S. (2013). Anatomy and Physiology of the Mammalian Auditory System. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_286-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_286-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics