Skip to main content

Phase Models, Noisy

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 288 Accesses

Definition

Neural oscillators can be reduced to simple one-dimensional models where the only variable is the time-like phase of the oscillator. If the inputs to the oscillator are small enough, this phase description remains valid even if the inputs are “noisy.” Using the noisy phase description of an oscillator allows us to do many otherwise difficult calculations. We review these calculations in this entry.

Detailed Description

Noise is ubiquitous in the nervous system and has been the subject of many experimental and theoretical studies (Laing and Lord 2009). Most of the techniques for analyzing the effects of noise depend on the use of very simple models such as the leaky integrate-and-fire model or other scalar models. Many neurons generate periodic firing (oscillations) when subjected to a tonic drive but because they are subjected to many uncontrolled environmental inputs, the oscillations are subjected to noise. In absence of any inputs a deterministic limit-cycle oscillator...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abouzeid A, Ermentrout B (2009) Type-II phase resetting curve is optimal for stochastic synchrony. Phys Rev E 80:011911

    Article  Google Scholar 

  • Arai K, Nakao H (2008) Phase coherence in an ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses. Phys Rev E 77:036218

    Article  Google Scholar 

  • Arthur JG, Burton SD, Ermentrout GB (2012) Stimulus features, resetting curves, and the dependence on adaptation. J Comput Neurosci 34(3):505–520

    Article  PubMed  Google Scholar 

  • Burton SD, Ermentrout GB, Urban NN (2012) Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization. J Neurophysiol 108:2115–2133

    Article  PubMed Central  PubMed  Google Scholar 

  • Ermentrout GB, Galán RF, Urban NN (2007a) Reliability, synchrony and noise. Trends Neurosci 31:428–434

    Article  Google Scholar 

  • Ermentrout GB, Galán RF, Urban NN (2007b) Relating neural dynamics to neural coding. Phys Rev Lett 99:248103

    Article  PubMed Central  PubMed  Google Scholar 

  • Ermentrout GB, Beverlin B II, Troyer T, Netoff TI (2011) The variance of phase-resetting curves. J Comput Neurosci 31:185–197

    Article  PubMed  Google Scholar 

  • Goldobin DS, Teramae J, Nakao H, Ermentrout GB (2010) Dynamics of limit-cycle oscillators subject to general noise. Phys Rev Lett 105:154101

    Article  PubMed  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  • Laing C, Lord GJ (2009) Stochastic methods in neuroscience. Oxford University Press, Oxford

    Book  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506

    Article  CAS  PubMed  Google Scholar 

  • Marella S, Ermentrout GB (2008) Class II neurons display a higher degree of stochastic synchronization than Class I. Phys Rev E 77:041918

    Article  Google Scholar 

  • Nakao H, Arai K, Kawamura Y (2007) Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators. Phys Rev Lett 98:184101

    Article  PubMed  Google Scholar 

  • Ota K, Omori T, Miyakawa H, Okada M, Aonishi T (2012) Higher-order spike triggered analysis of neural oscillators. PLoS One 7:e50232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeuty B, Mato G, Golomb D, Hansel D (2003) Electrical synapses and synchrony: the role of intrinsic currents. J Neurosci 23(15):6280–6294. Erratum in: J Neurosci. 2003;23(18):7237

    CAS  PubMed  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Stiefel KM, Fellous J-M, Thomas PJ, Sejnowski TJ (2010) Intrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons. Eur J Neurosci 31:1019–1026

    Article  PubMed Central  PubMed  Google Scholar 

  • Teramae J, Tanaka D (2004) Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93:204103

    Article  PubMed  Google Scholar 

  • Teramae J, Nakao H, Ermentrout GB (2009) Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys Rev Lett 102:194102

    Article  PubMed  Google Scholar 

  • Torben-Nielsen B, Uusisaari M, Stiefel KM (2010) A comparison of methods to determine neuronal phase-response curves. Front Neuroinformatics 4:6

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ermentrout, G.B. (2014). Phase Models, Noisy. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_265-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_265-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics