Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Neuromodulation in Small Networks

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_26-2

Definition

Neuromodulators are signaling molecules that induce long-lasting or network-wide changes in electrical activity, canonically through metabotropic G-coupled protein receptors. In contrast to classical neurotransmission, which directly opens ion channels, neuromodulators can act either synaptically or extra-synaptically (e.g., hormonal pathways) to modify neuronal activity. Because neuromodulators can simultaneously target many neurons, our understanding of their function on networks has progressed furthest in small systems with known connectivity. In particular, much research has been conducted within invertebrate central pattern generator (CPG) networks. These networks exhibit spontaneous electrical discharges that drive rhythmic muscle contractions to produce simple behaviors such as chewing, breathing, and locomotion.

Detailed Description

Neuromodulation, while often receiving less attention than direct synaptic communication between neurons, is a vital and ubiquitous...

Keywords

Dopamine Respiration Serotonin Histamine Noradrenaline 
This is a preview of subscription content, log in to check access

References

  1. Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman & Hall, LondonGoogle Scholar
  2. Ballo AW, Nadim F, Bucher D (2012) Dopamine modulation of IH improves temporal fidelity of spike propagation in an unmyelinated axon. J Neurosci 32:5106–5119PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–465PubMedCrossRefGoogle Scholar
  4. Boonen K, Creemers JW, Schoofs L (2009) Bioactive peptides, networks and systems biology. Bioessays 31:300–314PubMedCrossRefGoogle Scholar
  5. Brezina V (2010) Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos Trans R Soc Lond B Biol Sci 365:2363–2374PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brezina V, Weiss KR (1997) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543PubMedCrossRefGoogle Scholar
  7. Brezina V, Orekhova IV, Weiss KR (1996) Functional uncoupling of linked neurotransmitter effects by combinatorial convergence. Science 273:806–810PubMedCrossRefGoogle Scholar
  8. Brezina V, Orekhova IV, Weiss KR (2000) Optimization of rhythmic behaviors by modulation of the neuromuscular transform. J Neurophysiol 83:260–279PubMedGoogle Scholar
  9. Brezina V, Orekhova IV, Weiss KR (2003) Neuromuscular modulation in Aplysia. II. Modulation of the neuromuscular transform in behavior. J Neurophysiol 90:2613–2628PubMedCrossRefGoogle Scholar
  10. Brezina V, Horn CC, Weiss KR (2005) Modeling neuromuscular modulation in Aplysia. III. interaction of central motor commands and peripheral modulatory state for optimal behavior. J Neurophysiol 93:1523–1556PubMedCrossRefGoogle Scholar
  11. Calin-Jageman RJ, Tunstall MJ, Mensh BD et al (2007) Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98:2382–2398PubMedCrossRefGoogle Scholar
  12. Chao MY, Komatsu H, Fukuto HS et al (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci USA 101:15512–15517PubMedPubMedCentralCrossRefGoogle Scholar
  13. Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169PubMedCrossRefGoogle Scholar
  14. Clynen E, Reumer A, Baggerman G et al (2010) Neuropeptide biology in Drosophila. Adv Exp Med Biol 692:192–210PubMedCrossRefGoogle Scholar
  15. Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136PubMedCrossRefGoogle Scholar
  16. Cropper EC, Evans CG, Hurwitz I et al (2004) Feeding neural networks in the mollusk Aplysia. Neurosignals 13:70–86PubMedCrossRefGoogle Scholar
  17. Dickinson PS, Fairfield WP, Hetling JR, Hauptman J (1997) Neurotransmitter interactions in the stomatogastric system of the spiny lobster: one peptide alters the response of a central pattern generator to a second peptide. J Neurophysiol 77:599–610PubMedGoogle Scholar
  18. Djokaj S, Cooper RL, Rathmayer W (2001) Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol A 187:145–154PubMedCrossRefGoogle Scholar
  19. Doi A, Ramirez J-M (2010) State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing. J Neurosci 16:8251–8262CrossRefGoogle Scholar
  20. Fu Q, Tang LS, Marder EE, Li L (2007) Mass spectrometric characterization and physiological actions of VPNDWAHFRGSWamide, a novel B type allatostatin in the crab, Cancer borealis. J Neurochem 101:1099–1107PubMedCrossRefGoogle Scholar
  21. Fujisawa Y, Furukawa Y, Ohta S et al (1999) The Aplysia mytilus inhibitory peptide-related peptides: identification, cloning, processing, distribution, and action. J Neurosci 19:9618–9634PubMedGoogle Scholar
  22. Furukawa Y, Nakamaru K, Wakayama H et al (2001) The enterins: a novel family of neuropeptides isolated from the enteric nervous system and CNS of Aplysia. J Neurosci 21:8247–8261PubMedGoogle Scholar
  23. Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21:5229–5238PubMedGoogle Scholar
  24. Grashow R, Brookings T, Marder E (2009) Reliable neuromodulation from circuits with variable underlying structure. Proc Natl Acad Sci USA 106:11742–11746PubMedPubMedCentralCrossRefGoogle Scholar
  25. Guirguis MS, Wilkens JL (1995) The role of the cardioregulatory nerves in mediating heart rate responses to locomotion, reduced stroke volume, and neurohormones in Homarus americanus. Biol Bull 188:179–185CrossRefGoogle Scholar
  26. Gutierrez GJ, O’Leary T, Marder E (2013) Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77:845–858PubMedPubMedCentralCrossRefGoogle Scholar
  27. Harris-Warrick RM, Johnson BR (2010) Checks and balances in neuromodulation. Front Behav Neurosci 4:47PubMedPubMedCentralGoogle Scholar
  28. Harris-Warrick RM, Johnson BR, Peck JH et al (1998) Distributed effects of dopamine modulation in the crustacean pyloric network. Ann N Y Acad Sci 860:155–167PubMedCrossRefGoogle Scholar
  29. Horvitz HR, Chalfie M, Trent C et al (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014PubMedCrossRefGoogle Scholar
  30. Husson SJ, Mertens I, Janssen T, Lindemans M (2007) Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 82:33–55PubMedCrossRefGoogle Scholar
  31. Jing J, Weiss KR (2001) Neural mechanisms of motor program switching in Aplysia. J Neurosci 21:7349–7362PubMedGoogle Scholar
  32. Kaczmarek LK, Levitan IB (1987) Neuromodulation: the biochemical control of neuronal excitability. Oxford University Press, New YorkGoogle Scholar
  33. Kupfermann I, Weiss KR (2001) Motor program selection in simple model systems. Curr Opin Neurobiol 11:673–677Google Scholar
  34. Li C, Kim K (2008) Neuropeptides WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.142.1, http://www.wormbook.org
  35. Ma M, Szabo TM, Jia C et al (2009) Mass spectrometric characterization and physiological actions of novel crustacean C-type allatostatins. Peptides 30:1660–1668PubMedPubMedCentralCrossRefGoogle Scholar
  36. Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  37. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316PubMedCrossRefGoogle Scholar
  38. Marder E, Goaillard J-M (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574PubMedCrossRefGoogle Scholar
  39. Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138PubMedPubMedCentralCrossRefGoogle Scholar
  40. Mesce KA (2002) Metamodulation of the biogenic amines: second-order modulation by steroid hormones and amine cocktails. Brain Behav Evol 60:339–349PubMedCrossRefGoogle Scholar
  41. Mesce KA, Crisp KM, Gilchrist LS (2001) Mixtures of octopamine and serotonin have nonadditive effects on the CNS of the medicinal Leech. J Neurophysiol 85:2039–2046PubMedGoogle Scholar
  42. Morgan PT, Jing J, Vilim FS, Weiss KR (2002) Interneuronal and peptidergic control of motor pattern switching in Aplysia. J Neurophysiol 87:49–61PubMedGoogle Scholar
  43. Nagy F, Dickinson PS (1983) Control of a central pattern generator by an identified modulatory interneuron in crustacea. I. Modulation of the pyloric motor output. J Exp Biol 105:33–58PubMedGoogle Scholar
  44. Nusbaum MP, Blitz DM (2012) Neuropeptide modulation of microcircuits. Curr Opin Neurobiol 22:592–601PubMedPubMedCentralCrossRefGoogle Scholar
  45. Nusbaum MP, Marder E (1989) A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J Neurosci 9:1600–1607PubMedGoogle Scholar
  46. Nusbaum MP, Blitz DM, Swensen AM et al (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154PubMedCrossRefGoogle Scholar
  47. O’Leary T, Wyllie DJA (2011) Neuronal homeostasis: time for a change? J Physiol (Lond) 589:4811–4826Google Scholar
  48. Prier KR, Beckman OH, Tublitz NJ (1994) Modulating a modulator: biogenic amines at subthreshold levels potentiate peptide-mediated cardioexcitation of the heart of the tobacco hawkmoth Manduca sexta. J Exp Biol 197:377–391PubMedGoogle Scholar
  49. Roffman RC, Norris BJ, Calabrese RL (2012) Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J Neurophysiol 107:1681–1693PubMedPubMedCentralCrossRefGoogle Scholar
  50. Skiebe P, Schneider H (1994) Allatostatin peptides in the crab stomatogastric nervous system: inhibition of the pyloric motor pattern and distribution of allatostatin-like immunoreactivity. J Exp Biol 194:195–208PubMedGoogle Scholar
  51. Spitzer N, Cymbalyuk G, Zhang H et al (2008) Serotonin transduction cascades mediate variable changes in pyloric network cycle frequency in response to the same modulatory challenge. J Neurophysiol 99:2844–2863PubMedCrossRefGoogle Scholar
  52. Stevens JS, Cashman CR, Smith CM, Beale KM, Towle DW, Christie AE, Dickinson PS (2009) The peptide hormone pQDLDHVFLRFamide (crustacean myosuppressin) modulates the Homarus americanus cardiac neuromuscular system at multiple sites. J Exp Biol 212:3961–3976Google Scholar
  53. Sweedler JV, Li L, Rubakhin SS et al (2002) Identification and characterization of the feeding circuit-activating peptides, a novel neuropeptide family of aplysia. J Neurosci 22:7797–7808PubMedGoogle Scholar
  54. Swensen AM, Marder EE (2000) Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J Neurosci 20:6752–6759PubMedGoogle Scholar
  55. Swensen AM, Marder EE (2001) Modulators with convergent cellular actions elicit distinct circuit outputs. J Neurosci 21:4050–4058PubMedGoogle Scholar
  56. Tobin A-E, Calabrese RL (2005) Myomodulin increases IH and inhibits the Na/K pump to modulate bursting in leech heart interneurons. J Neurophysiol 94:3938–3950PubMedPubMedCentralCrossRefGoogle Scholar
  57. Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA 96:3257–3262PubMedPubMedCentralCrossRefGoogle Scholar
  58. Vilim FS, Sasaki K, Rybak J et al (2010) Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors. J Neurosci 30:131–147PubMedPubMedCentralCrossRefGoogle Scholar
  59. Whitacre JM (2010) Degeneracy: a link between evolvability, robustness and complexity in biological systems. Theor Biol Med Model 7:6PubMedPubMedCentralCrossRefGoogle Scholar
  60. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340PubMedCrossRefGoogle Scholar
  61. Williams AH, Calkins A, O’Leary T, Symonds R, Marder E, Dickinson PS (2013a) The neuromuscular transform of the lobster cardiac system explains the opposing effects of a neuromodulator on muscle output. J Neurosci 33(42):16565–16575PubMedPubMedCentralCrossRefGoogle Scholar
  62. Williams AH, O’Leary T, Marder E (2013b) Homeostatic regulation of neuronal excitability. Scholarpedia 8:1656CrossRefGoogle Scholar
  63. Wiwatpanit T, Powers B, Dickinson PS (2012) Inter-animal variability in the effects of C-type allatostatin on the cardiac neuromuscular system in the lobster Homarus americanus. J Exp Biol 215:2308–2318PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zhao S, Sheibanie AF, Oh M et al (2011) Peptide neuromodulation of synaptic dynamics in an oscillatory network. J Neurosci 31:13991–14004PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alex H. Williams
    • 1
    • 2
  • Albert W. Hamood
    • 2
  • Eve Marder
    • 2
  1. 1.University of CaliforniaSan Diego, La JollaUSA
  2. 2.Brandeis UniversityWalthamUSA