Skip to main content

Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 329 Accesses

Synonyms

F current; H current; HCN channels hyperpolarization-activated current; Ih; Q current

Definition

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are membrane ion channels that are permeable to sodium and potassium ions. They open when the membrane potential hyperpolarizes and close when it depolarizes. This contrasts with the majority of voltage-gated ion channels, which open on depolarization and close on hyperpolarization. HCN channel gating can be directly modulated by cyclic nucleotides. At a molecular level, HCN channels have a structure similar to voltage-gated potassium channels. Individual subunits have six transmembrane domains and a reentrant pore loop but are distinguished by a cyclic AMP-binding domain located near to their C-terminus. Functional channels are formed by homomeric or heteromeric assembly of four subunits.

Detailed Description

HCN channels are an important and striking exception to the general rule that voltage-gated ion channels...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D (2003) Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol 549(Pt 2):347–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Araki T, Ito M, Oshima T (1961) Potential changes produced by application of current steps in motoneurones. Nature 191:1104–1105

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Wilson M (1980) Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods. J Physiol 309:287–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bader CR, Macleish PR, Schwartz EA (1979) A voltage-clamp study of the light response in solitary rods of the tiger salamander. J Physiol 296:1–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baruscotti M, Bottelli G, Milanesi R, DiFrancesco JC, DiFrancesco D (2010) HCN-related channelopathies. Pflugers Arch 460(2):405–415

    Article  CAS  PubMed  Google Scholar 

  • Bell DC, Yao H, Saenger RC, Riley JH, Siegelbaum SA (2004) Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels. J Gen Physiol 123(1):5–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89(3):847–885

    Article  CAS  PubMed  Google Scholar 

  • Brown H, Difrancesco D (1980) Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node. J Physiol 308:331–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown HF, DiFrancesco D, Noble SJ (1979) How does adrenaline accelerate the heart? Nature 280(5719):235–236

    Article  CAS  PubMed  Google Scholar 

  • Cai X (2012) Evolutionary genomics reveals the premetazoan origin of opposite gating polarity in animal-type voltage-gated ion channels. Genomics 99(4):241–245

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117(5):491–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Shu S, Bayliss DA (2009) HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29(3):600–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DiFrancesco D (1986) Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324(6096):470–473

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D, Tromba C (1988) Muscarinic control of the hyperpolarization-activated current (if) in rabbit sino-atrial node myocytes. J Physiol 405:493–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan Y, Fricker D, Brager DH, Chen X, Lu HC, Chitwood RA, Johnston D (2005) Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I(h). Nat Neurosci 8(11):1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Gauss R, Seifert R, Kaupp UB (1998) Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393(6685):583–587

    Article  CAS  PubMed  Google Scholar 

  • Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250(1):71–92

    Article  CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996) Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76(2):683–697

    CAS  PubMed  Google Scholar 

  • Ishii TM, Takano M, Xie LH, Noma A, Ohmori H (1999) Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J Biol Chem 274(18):12835–12839

    Article  CAS  PubMed  Google Scholar 

  • Jackson HA, Hegle A, Nazzari H, Jegla T, Accili EA (2012) Asymmetric divergence in structure and function of HCN channel duplicates in Ciona intestinalis. PLoS One 7(11):e47590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim CS, Chang PY, Johnston D (2012) Enhancement of dorsal hippocampal activity by knockdown of HCN1 channels leads to anxiolytic- and antidepressant-like behaviors. Neuron 75(3):503–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kole MH, Hallermann S, Stuart GJ (2006) Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 26(6):1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Krieger J, Strobel J, Vogl A, Hanke W, Breer H (1999) Identification of a cyclic nucleotide- and voltage-activated ion channel from insect antennae. Insect Biochem Mol Biol 29(3):255–267

    Article  CAS  PubMed  Google Scholar 

  • Lewis AS, Schwartz E, Chan CS, Noam Y, Shin M, Wadman WJ, Surmeier DJ, Baram TZ, Macdonald RL, Chetkovich DM (2009) Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function. J Neurosci 29(19):6250–6265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis AS, Vaidya SP, Blaiss CA, Liu Z, Stoub TR, Brager DH, Chen X, Bender RA, Estep CM, Popov AB, Kang CE, Van Veldhoven PP, Bayliss DA, Nicholson DA, Powell CM, Johnston D, Chetkovich DM (2011) Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J Neurosci 31(20):7424–7440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393(6685):587–591

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M (1999) Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J 18(9):2323–2329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22(2):216–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624

    CAS  PubMed  Google Scholar 

  • Magee JC (1999) Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2(6):508–514

    Article  CAS  PubMed  Google Scholar 

  • Mannikko R, Elinder F, Larsson HP (2002) Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419(6909):837–841

    Article  CAS  PubMed  Google Scholar 

  • Marx T, Gisselmann G, Stortkuhl KF, Hovemann BT, Hatt H (1999) Molecular cloning of a putative voltage- and cyclic nucleotide-gated ion channel present in the antennae and eyes of Drosophila melanogaster. Invert Neurosci 4(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Mistrik P, Mader R, Michalakis S, Weidinger M, Pfeifer A, Biel M (2005) The murine HCN3 gene encodes a hyperpolarization-activated cation channel with slow kinetics and unique response to cyclic nucleotides. J Biol Chem 280(29):27056–27061

    Article  CAS  PubMed  Google Scholar 

  • Noam Y, Bernard C, Baram TZ (2011) Towards an integrated view of HCN channel role in epilepsy. Curr Opin Neurobiol 21(6):873–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nolan MF, Malleret G, Lee KH, Gibbs E, Dudman JT, Santoro B, Yin D, Thompson RF, Siegelbaum SA, Kandel ER, Morozov A (2003) The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell 115(5):551–564

    Article  CAS  PubMed  Google Scholar 

  • Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B, Gibbs E, Vronskaya S, Buzsaki G, Siegelbaum SA, Kandel ER, Morozov A (2004) A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119(5):719–732

    CAS  PubMed  Google Scholar 

  • Nolan MF, Dudman JT, Dodson PD, Santoro B (2007) HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J Neurosci 27(46):12440–12451

    Article  CAS  PubMed  Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  CAS  PubMed  Google Scholar 

  • Proenza C, Angoli D, Agranovich E, Macri V, Accili EA (2002) Pacemaker channels produce an instantaneous current. J Biol Chem 277(7):5101–5109

    Article  CAS  PubMed  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 868:741–764

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Grant SG, Bartsch D, Kandel ER (1997) Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A 94(26):14815–14820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93(5):717–729

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, Siegelbaum SA (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20(14):5264–5275

    CAS  PubMed  Google Scholar 

  • Santoro B, Wainger BJ, Siegelbaum SA (2004) Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J Neurosci 24(47):10750–10762

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Piskorowski RA, Pian P, Hu L, Liu H, Siegelbaum SA (2009) TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain. Neuron 62(6):802–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB (1999) Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci U S A 96(16):9391–9396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shah MM, Huang Z, Martinello K (2013) HCN and KV7 (M-) channels as targets for epilepsy treatment. Neuropharmacology 69:75–81

    Article  CAS  PubMed  Google Scholar 

  • Stieber J, Stockl G, Herrmann S, Hassfurth B, Hofmann F (2005) Functional expression of the human HCN3 channel. J Biol Chem 280(41):34635–34643

    Article  CAS  PubMed  Google Scholar 

  • Tsay D, Dudman JT, Siegelbaum SA (2007) HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56(6):1076–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulens C, Tytgat J (2001) Functional heteromerization of HCN1 and HCN2 pacemaker channels. J Biol Chem 276(9):6069–6072

    Article  CAS  PubMed  Google Scholar 

  • Ulrich D (2002) Dendritic resonance in rat neocortical pyramidal cells. J Neurophysiol 87(6):2753–2759

    PubMed  Google Scholar 

  • Vaccari T, Moroni A, Rocchi M, Gorza L, Bianchi ME, Beltrame M, DiFrancesco D (1999) The human gene coding for HCN2, a pacemaker channel of the heart. Biochim Biophys Acta 1446(3):419–425

    Article  CAS  PubMed  Google Scholar 

  • van Welie I, van Hooft JA, Wadman WJ (2004) Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated Ih channels. Proc Natl Acad Sci U S A 101(14):5123–5128

    Article  PubMed Central  PubMed  Google Scholar 

  • Vemana S, Pandey S, Larsson HP (2004) S4 movement in a mammalian HCN channel. J Gen Physiol 123(1):21–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR (2001) Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 411(6839):805–810

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen S, Nolan MF, Siegelbaum SA (2002) Activity-dependent regulation of HCN pacemaker channels by cyclic AMP. Signaling through dynamic allosteric coupling. Neuron 36(3):451–461

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AF (2007) Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129(2):397–410

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch 385(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425(6954):200–205

    Article  CAS  PubMed  Google Scholar 

  • Zolles G, Wenzel D, Bildl W, Schulte U, Hofmann A, Muller CS, Thumfart JO, Vlachos A, Deller T, Pfeifer A, Fleischmann BK, Roeper J, Fakler B, Klocker N (2009) Association with the auxiliary subunit PEX5R/Trip8b controls responsiveness of HCN channels to cAMP and adrenergic stimulation. Neuron 62(6):814–825

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew F. Nolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Nolan, M.F. (2014). Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_231-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_231-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics