Skip to main content

Peripheral Nerve Interface, Regenerative

  • Living reference work entry
  • First Online:
  • 297 Accesses

Definition

Regenerative peripheral interfaces (RPIs) are implantable devices that rely on the spontaneous regenerative capability of the injured peripheral nervous system to establish a bidirectional flow of information between the transected nerves in amputees and smart robotic prosthetics. RPIs are designed to provide intuitive movement and natural feel to advanced prosthetics for amputees and are characterized by the placement of multielectrode arrays (MEAs) in the regenerative path of their transected peripheral nerves. The MEAs detect motor commands from the brain as extracellular action potentials (AP) in the microvolt range traveling down their amputated nerves and use them to control the robotic prosthetic limb. In addition, RPIs can translate information from sensors populating the robotic limb to the user, by electrically stimulating axons in the nerve that elongate from neurons in the dorsal root ganglia.

Detailed Description

Regenerative Peripheral Interfaces (RPIs)

RPIs...

This is a preview of subscription content, log in via an institution.

References

  • Bradley RM, Cao X, Akin T, Najafi K (1997) Long term chronic recordings from peripheral sensory fibers using a sieve electrode array. J Neurosci Methods 73(2):177–186

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald JJ, Lago N, Benmerah S, Serra J, Watling CP, Cameron RE, Tarte E, Lacour SP, McMahon SB, Fawcett JW (2012) A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J Neural Eng 9(1):016010

    Article  PubMed  Google Scholar 

  • Edell DJ (1986) A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng 33(2):203–214

    Article  PubMed  CAS  Google Scholar 

  • Mannard A et al (1974) Regeneration electrode units: implants for recording from single peripheral nerve fibers in freely moving animals. Science 183(124):547–549

    Article  PubMed  CAS  Google Scholar 

  • Minev IR, Chew DJ, Delivopoulos E, Fawcett JW, Lacour SP (2012) High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation. J Neural Eng 9(2):026005

    Article  PubMed  Google Scholar 

  • Seifert JL, Desai V, Watson RC, Musa T, Kim YT, Keefer EW, Romero MI (2012) Normal molecular repair mechanisms in regenerative peripheral nerve interfaces allow recording of early spike activity despite immature myelination. IEEE Trans Neural Syst Rehabil Eng 20(2): 220–227

    Google Scholar 

Further Reading

  • Akin T, Najafi K, Smoke RH, Bradley RM (1994) A micromachined silicon sieve electrode for nerve regeneration applications. IEEE Trans Biomed Eng 41(4):305–313

    Article  PubMed  CAS  Google Scholar 

  • Bradley RM, Smoke RH, Akin T, Najafi K (1992) Functional regeneration of glossopharyngeal nerve through micromachined sieve electrode arrays. Brain Res 594(1):84–90

    Article  PubMed  CAS  Google Scholar 

  • Castro J, Negredo P, Avendano C (2008) Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 1190:65–77

    Article  PubMed  CAS  Google Scholar 

  • Delivopoulos E, Chew DJ, Minev IR, Fawcett JW, Lacour SP (2012) Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array. Lab Chip 12(14):2540–2551

    Article  PubMed  CAS  Google Scholar 

  • Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472

    Article  PubMed  Google Scholar 

  • Durand DM, Yoo P, Lertmanorat Z (2004) Neural interfacing with the peripheral nervous system. Conf Proc IEEE Eng Med Biol Soc 7:5329–5332

    PubMed  Google Scholar 

  • Edell DJ, Churchill JN, Gourley IM (1982) Biocompatibility of a silicon based peripheral nerve electrode. Biomater Med Devices Artif Organs 10(2):103–122

    PubMed  CAS  Google Scholar 

  • Garde K, Keefer E, Botterman B, Galvan P, Romero MI (2009) Early interfaced neural activity from chronic amputated nerves. Front Neuroeng 2:5:1–11

    Google Scholar 

  • Hu X, Cai J, Yang J, Smith GM (2010) Sensory axon targeting is increased by NGF gene therapy within the lesioned adult femoral nerve. Exp Neurol 223(1):153–165

    Google Scholar 

  • Kim Y, Romero-Ortega MI (2012) Material considerations for peripheral nerve interfacing. MRS Bull 37:1–8

    Google Scholar 

  • Kovacs GT, Storment CW, Rosen JM (1992) Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Trans Biomed Eng 39(9):893–902

    Article  PubMed  CAS  Google Scholar 

  • Lago N, Ceballos D, Rodriguez FJ, Stieglitz T, Navarro X (2005) Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26(14):2021–2031

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Nicholson C, Johnson K (1973) Implantable monolithic wafer recording electrodes for neurophysiology. Charles C. Thomas, Springfield

    Google Scholar 

  • Lotfi P, Garde K, Chouhan AK, Bengali E, Romero-Ortega MI (2011) Modality-specific axonal regeneration: toward selective regenerative neural interfaces. Front Neuroeng 4:1–11

    Article  Google Scholar 

  • Mensinger AF, Anderson DJ, Buchko CJ, Johnson MA, Martin DC, Tresco PA, Silver RB, Highstein SM (2000) Chronic recording of regenerating VIIIth nerve axons with a sieve electrode. J Neurophysiol 83(1):611–615

    PubMed  CAS  Google Scholar 

  • Micera S, Navarro X (2009) Bidirectional interfaces with the peripheral nervous system. Int Rev Neurobiol 86:23–38

    Article  PubMed  Google Scholar 

  • Navarro X, Calvet S, Rodriguez FJ, Stieglitz T, Blau C, Buti M, Valderrama E, Meyer JU (1998) Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes. J Peripher Nerv Syst 3(2):91–101

    PubMed  CAS  Google Scholar 

  • Stieglitz T, Ruf HH, Gross M, Schuettler M, Meyer JU (2002) A biohybrid system to interface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. Biosens Bioelectron 17(8):685–696

    Article  PubMed  CAS  Google Scholar 

  • Wallman L, Levinsson A, Schouenborg J, Holmberg H, Montelius L, Danielsen N, Laurell T (1999) Perforated silicon nerve chips with doped registration electrodes: in vitro performance and in vivo operation. IEEE Trans Biomed Eng 46(9):1065–1073

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Romero-Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Romero-Ortega, M. (2014). Peripheral Nerve Interface, Regenerative. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_212-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_212-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics