Skip to main content

Protein Kinase A, Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bhalla US (2004a) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys J 87:733–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhalla US (2004b) Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys J 87:745–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387

    Article  CAS  PubMed  Google Scholar 

  • Doskeland SO (1978) Evidence that rabbit muscle protein kinase has two kinetically distinct binding sites for adenosine 3′,5′-cyclic monophosphate. Biochem Biophys Res Commun 83(2):542–549

    Article  CAS  PubMed  Google Scholar 

  • Doskeland SO, Ogreid D (1984) Characterization of the interchain and intrachain interactions between the binding sites of the free regulatory moiety of protein kinase I. J Biol Chem 259(4):2291–2301

    CAS  PubMed  Google Scholar 

  • Gill GN, Garren LD (1969) On the mechanism of action of adrenocorticotropic hormone: the binding of cyclic-3′,5′-adenosine monophosphate to an adrenal cortical protein. Proc Natl Acad Sci U S A 63(2):512–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3(11):e221

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasler P, Moore JJ, Kammer GM (1992) Human T lymphocyte cAMP-dependent protein kinase: subcellular distributions and activity ranges of type I and type II isozymes. FASEB J 6(9):2735–2741

    CAS  PubMed  Google Scholar 

  • Herberg FW, Taylor SS, Dostmann WRG (1996) Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Biochemistry 35:2934–2942

    Article  CAS  PubMed  Google Scholar 

  • Johnson DA, Leathers VL, Martinez AM, Walsh DA, Fletcher WH (1993) Fluorescence resonance energy transfer within a heterochromatic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insights into the conformational changes that result in cAMP-dependent activation. Biochemistry 32(25):6402–6410

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Huang T, Abel T, Blackwell KT (2010) Temporal sensitivity of protein kinase A activation in late-phase long term potentiation. PLoS Comput Biol 6(2):e1000691

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim M, Park AJ, Havekes R, Chay A, Guercio LA, Oliveira RF, Abel T, Blackwell KT (2011) Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput Biol 7(6):e1002084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krebs EG, Fischer EH (1956) The phosphorylase-B to phosphorylase-A converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta 20:150–157

    Article  CAS  PubMed  Google Scholar 

  • Krebs EG, Graves DJ, Fischer EH (1959) Factors affecting the activity of muscle phosphorylase B kinase. J Biol Chem 234:2867–2873

    CAS  PubMed  Google Scholar 

  • Lisman JE, Zhabotinsky AM (2001) A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31:191–201

    Article  CAS  PubMed  Google Scholar 

  • Miller P, Zhabotinsky AM, Lisman JE, Wang X-J (2005) The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol 3(4):e107

    Article  PubMed Central  PubMed  Google Scholar 

  • Nguyen PV, Woo NH (2003) Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 71:401–437

    Article  CAS  PubMed  Google Scholar 

  • Ogreid D, Doskeland SO (1981) The kinetics of association of cyclic AMP to the two types of binding sites associated with protein kinase II from bovine myocardium. FEBS Lett 129:287–292

    Article  CAS  PubMed  Google Scholar 

  • Ogreid D, Doskeland SO (1982) Activation of protein kinase isoenzymes under near physiological conditions. Evidence that both types (A and B) of cAMP binding sites are involved in the activation of protein kinase by cAMP and 8-N3-cAMP. FEBS Lett 150:161–166

    Article  CAS  PubMed  Google Scholar 

  • Smith SB, White HD, Siegel JB, Krebs EG (1981) Cyclic AMP-dependent protein kinase I: cyclic nucleotide binding, structural changes, and release of the catalytic subunits. Proc Natl Acad Sci U S A 78(3):1591–1595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swillens S (1983) On the interactions of adenosine 3′, 5′-monophosphate with the components of protein kinase I. Eur J Biochem 137:581–587

    Article  CAS  PubMed  Google Scholar 

  • Taylor SS, Zheng J, Radzio-Andzelm E, Knighton DR, Ten Eyck LF, Sowadski JM, Herberg FW, Yonemoto WM (1993) cAMP-dependent protein kinase defines a family of enzymes. Philos Trans R Soc B 340(1293):315–324

    Article  CAS  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 30,50-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243:3763–3765

    CAS  PubMed  Google Scholar 

  • Walsh DA, Angelos KL, Van Patten SM, Glass DB, Garetto LP (1990) The inhibitor protein of the cAMP-dependent protein kinase, chap. 2. In: Kemp BE (ed) Peptides and protein phosphorylation. CRC Press, Boca Raton

    Google Scholar 

  • Zawadzki KM, Taylor SS (2004) cAMP-dependent protein kinase regulatory subunit type II beta: active site mutations define an isoform-specific network for allosteric signaling by cAMP. J Biol Chem 279:7029–7036

    Article  CAS  PubMed  Google Scholar 

  • Zhabotinsky AM (2000) Bistability in the Ca2+/Calmodulin-dependent protein kinase-phosphatase system. Biophys J 79:2211–2221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim T. Blackwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Blackwell, K.T., Jedrzejewska-Szmek, J. (2014). Protein Kinase A, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_192-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_192-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics