Skip to main content

Calmodulin, Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Calmodulin (CaM) is a small (148 amino acid) ubiquitous protein responsible for decoding oscillatory changes in intracellular calcium and transducing the signal to downstream targets. Four separate calcium (Ca2+)-binding sites are distributed into two globular domains (the N- and C-lobes) tethered together by a linker whose structural flexibility is essential for interactions with its multiple target proteins. So, despite its small size, there are significant complexities in building quantitative mathematical models to accommodate the multitude of different structural (liganded) states that ultimately dictate CaM’s functions. Detailed molecular modeling is beginning to advance our understanding for how this single protein can interact with several unique target proteins in both Ca2+-bound (holoCaM) and Ca2+-free (apoCaM) states.

Detailed Description

CaM is typically described as a dumbbell-shaped protein with two globular domains connected through a central helix (Crivici...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bayley PM, Findlay WA et al (1996) Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci 5(7):1215–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharya S, Bunick CG et al (2004) Target selectivity in EF-hand calcium binding proteins. Biochim Biophys Acta 1742:69–79

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Husain M (2006) Calmodulin-mediated cell cycle regulation: new mechanisms for old observations. Cell Cycle 5(19):2183–2186

    Article  CAS  PubMed  Google Scholar 

  • Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116

    Article  CAS  PubMed  Google Scholar 

  • Debye P, Hückel E (1923) The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physikalische Zeitschrift 24:185–206

    CAS  Google Scholar 

  • Faas GC, Raghavachari S et al (2011) Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14(3):301–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaertner TR, Putkey JA et al (2004) RC3/Neurogranin and Ca2+/calmodulin-dependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium. J Biol Chem 279(38):39374–39382

    Article  CAS  PubMed  Google Scholar 

  • Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742

    Article  CAS  PubMed  Google Scholar 

  • Holmes WR (2000) Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. J Comput Neurosci 8(1):65–85

    Article  CAS  PubMed  Google Scholar 

  • Homouz D, Sanabria H et al (2009) Modulation of calmodulin plasticity by the effect of macromolecular crowding. J Mol Biol 391:933–943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller DX, Franks KM et al (2008) Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 3(4):e2045

    Article  PubMed Central  PubMed  Google Scholar 

  • Kubota Y, Waxham MN (2010) Lobe specific Ca2+−calmodulin nano-domain in neuronal spines: a single molecule level analysis. PLoS Comput Biol 6(11):e1000987

    Article  PubMed Central  PubMed  Google Scholar 

  • Linse S, Helmersson A et al (1991) Calcium binding to calmodulin and its globular domains. J Biol Chem 266(13):8050–8054

    CAS  PubMed  Google Scholar 

  • Minton A (1981) Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20:2093–2120

    Article  CAS  Google Scholar 

  • Price ES, DeVore MS et al (2010) Detecting intramolecular dynamics and multiple forster resonance energy transfer states by fluorescence correlation spectroscopy. J Phys Chem B 114:5895–5902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Putkey JA, Waxham MN et al (2008) Acidic/IQ motif regulator of calmodulin. J Biol Chem 283(3):1401–1410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saucerman JJ, Bers DM (2008) Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophys J 95(10):4597–4612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw DE, Maragakis P et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  CAS  PubMed  Google Scholar 

  • Slaughter BD, Bieber-Urbauer RJ et al (2005) Single-molecule tracking of sub-millisecond domain motion in calmodulin. J Phys Chem B 109:12658–12662

    Article  CAS  PubMed  Google Scholar 

  • Stefan MI, Edelstein SJ et al (2008) An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc Natl Acad Sci U S A 105(31):10768–10773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Liang KC et al (2011) The effect of macromolecular crowding, ionic strength and calcium binding on calmodulin dynamics. Plos Comput Biol 7(7)

    Google Scholar 

  • Yamniuk AP, Vogel HJ (2004) Calmodulin’s flexibility allows for promiscuity in its interaction with target proteins and peptides. Mol Biotechnol 27:33–57

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Neal Waxham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Waxham, M.N., Cheung, M.S. (2013). Calmodulin, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_183-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_183-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics