Skip to main content

Calcium Pumps, Models of

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 362 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amini B, Clark JW Jr, Canavier CC (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82(5):2249–2261

    CAS  PubMed  Google Scholar 

  • Blackwell KT (2002) Calcium waves and closure of leak potassium currents caused by GABA stimulation of the type B photoreceptor of Hermissenda crassicornis. J Neurophysiol 87:776–792

    CAS  PubMed  Google Scholar 

  • Blackwell KT (2004) Paired turbulence and light do not produce a supralinear calcium increase in Hermissenda. J Comput Neurosci 17:81–99

    Article  PubMed  Google Scholar 

  • Campbell DL, Giles WR, Robinson K, Shibata EF (1988) Studies of the sodium-calcium exchanger in bull-frog atrial myocytes. J Physiol 403:317–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiFrancesco D, Noble D (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci 307:353–398

    Article  CAS  PubMed  Google Scholar 

  • Enyedi A, Verma AK, Heim R, damo HP, Filoteo AG, Strehler EE, Penniston JT (1994) The Ca2+ affinity of the Plasma Membrane Ca2+ pump is controlled by alternative splicing. J Biol Chem 269:41–43

    Google Scholar 

  • Fujioka Y, Komeda M, Matsuoka S (2000) Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol 523(Pt 2):339–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gall D, Gromada J, Susa I, Rorsman P, Herchuelz A, Bokvist K (1999) Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells. Biophys J 76:2018–2028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haase A, Hartung K (2009) Pre-steady-state kinetics of Ba-Ca exchange reveals a second electrogenic step involved in Ca2+ translocation by the Na-Ca exchanger. Biophys J 96(11):4571–4580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110(20):3168–3174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jafri MS, Rice JJ, Winslow RL (1998) Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 74(3):1149–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang TM, Hilgemann DW (2004) Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 427(6974):544–548

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Matsuoka S (2008) Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+–Ca2+ exchange. J Physiol 586(6):1683–1697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korhonen T, Rapila R, Tavi P (2008) Mathematical model of mouse embryonic cardiomyocyte excitation-contraction coupling. J Gen Physiol 132(4):407–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li YX, Rinzel J. (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol. 166(4):461–73

    Article  CAS  PubMed  Google Scholar 

  • Morgans CW, El Far O, Berntson A, Wässle H, Taylor WR. (1998) Calcium extrusion from mammalian photoreceptor terminals. J Neurosci. 18(7):2467–74

    CAS  PubMed  Google Scholar 

  • Omelchenko A, Hryshko LV (1996) Current–voltage relations and steady-state characteristics of Na+-Ca2+ exchange: characterization of the eight-state consecutive transport model. Biophys J 71(4):1751–1763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Priebe L, Beuckelmann DJ (1998) Simulation study of cellular electric properties in heart failure. Circ Res 82(11):1206–1223

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson RL, Clark JW, Giles WR, Shibata EF, Campbell DL (1990) A mathematical model of a bullfrog cardiac pacemaker cell. Am J Physiol 259(2 Pt 2):H352–H369

    CAS  PubMed  Google Scholar 

  • Rovetti R, Cui X, Garfinkel A, Weiss JN, Qu Z (2010) Spark-induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes. Circ Res 106(10):1582–1591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tran K1, Smith NP, Loiselle DS, Crampin EJ (2009) A thermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca(2+) (SERCA) pump. Biophys J 96(5):2029–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber CR, Ginsburg KS, Philipson KD, Shannon TR, Bers DM (2001) Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J Gen Physiol 117:119–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim T. Blackwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Blackwell, K.T. (2014). Calcium Pumps, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_180-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_180-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics