Skip to main content

Modeling of Bimolecular Reactions

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

A bimolecular reaction refers to the chemical combination of two molecular entities in a reaction that can be considered either reversible or irreversible. The reaction can involve two chemically distinct molecules, e.g., A + B, or two identical molecules, e.g., A + A. The reaction can be characterized with respect to association and dissociation rate constants, which also define the equilibrium constant. However, it is also possible to establish the equilibrium constant without direct knowledge of the rate constants. For many applications to biological systems, one or both of the components possess multiple reaction sites and/or distinct conformational states, adding levels of complexity that must be considered for a complete description of the system.

Detailed Description

For computational neuroscience encompassing the molecular level, bimolecular reactions are encountered for virtually all topics considered. Neurons and their accompanying cells of other classes are living...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Changeux JP, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428

    Article  CAS  PubMed  Google Scholar 

  • Edelstein SJ, Changeux JP (2010) Relationships between structural dynamics and functional kinetics in oligomeric membrane receptors. Biophys J 98:2045–2052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edelstein SJ, Schaad O, Henry E, Bertrand D, Changeux JP (1996) A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol Cybern 75:361–379

    Article  CAS  PubMed  Google Scholar 

  • Edelstein SJ, Stefan MI, Le Novere N (2010) Ligand depletion in vivo modulates the dynamic range and cooperativity of signal transduction. PLoS One 5:e8449

    Article  PubMed Central  PubMed  Google Scholar 

  • Endler L, Stefan MI, Edelstein SJ, Le Novere N (2012) Using chemical kinetics to model neuronal signalling pathways. In: Le Novere N (ed) Computational systems neurobiology. Springer, Dordrecht, pp 81–117

    Chapter  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  • Stefan MI, Edelstein SJ, Le Novère N (2008) An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc Natl Acad Sci USA 105:10768–10773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Edelstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Edelstein, S. (2014). Modeling of Bimolecular Reactions. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_176-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_176-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics