Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Neuronal Parameter Space Visualization

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_175-1

Definition

The visual display of the behavior of a neuron, a neuron model, or a network of neurons or neuron models, for a number of parameters which govern model behavior or describe a series of observations.

Detailed Description

Computational neuron and network models have a number of free parameters that influence the models’ behavior. For example, a leaky integrate-and-fire model may allow for adjusting two parameters, the leak conductance and the resting potential. More parameters are needed to characterize more elaborate point neuron models like the Izhikevich model (4 parameters; Izhikevich 2007) or the exponential adaptive integrate-and-fire model (6 parameters, Gerstner and Brette 2005). Biophysical models that contain cable equations for passive membranes and Hodgkin–Huxley-type dynamics for active channels easily reach parameter counts of a dozen or more. Even higher parameter counts are achieved when coupling several neurons in a network, since synaptic coupling strengths...

Keywords

Firing Rate Neuron Model Discrete Grid Cable Equation Inhibitory Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Gerstner W, Brette R (2005) Adaptive Integrate-and-fire model. Scholarpedia 4:8427CrossRefGoogle Scholar
  2. Izhikevich E (2007) Dynamical systems in neuroscience. MIT Press, Cambridge, MAGoogle Scholar
  3. LeBlanc J, Ward MO, Wittels N (1990) Exploring n-dimensional databases. In: VIS ’90: Proceedings of the 1st conference on visualization ’90. IEEE Computer Society Press, Los Alamitos, pp 230–237Google Scholar
  4. Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998–4015PubMedCrossRefGoogle Scholar
  5. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326PubMedCrossRefGoogle Scholar
  6. Schmuker M (2013) https://github.com/Huitzilo/param-space-visu. Accessed 25 Sept 2013
  7. Taylor AL, Hickey TJ, Prinz AA, Marder E (2006) Structure and visualization of high-dimensional conductance spaces. J Neurophysiol 96:891–905PubMedCrossRefGoogle Scholar
  8. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Neuroinformatics & Theoretical Neuroscience, Institute for BiologyFreie Universität BerlinBerlinGermany