Skip to main content

Neuronal Parameter Co-regulation

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 236 Accesses

Synonyms

Conductance co-regulation; Conductance scaling

Definition

Neuronal parameter co-regulation is the exploration or alteration of distinct subsets of parameters (e.g., synaptic or membrane conductances) and how these parameters act in concert leading to changes in, or conservation of, neuronal output.

Detailed Description

The underlying ionic conductances found within a model neuron represent the parameters which determine the characteristics and output of a given model cell. These parameters are usually derived from biological data, such as voltage-clamp measurements of ionic conductance characteristics in defined cell types. The range over which these parameters can vary in a given system is referred to as the “parameter space” with a dimensionality dictated by the number of parameters allowed to vary in the system.

One area of interest in neuroscience, and a focus of modeling studies, is the interaction of distinct underlying physiological characteristics in the ultimate...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amendola J, Woodhouse A, Martin-Eauclaire MF, Goaillard JM (2012) Ca(2)(+)/cAMP-sensitive covariation of I(A) and I(H) voltage dependences tunes rebound firing in dopaminergic neurons. J Neurosci 32:2166–2181

    Article  CAS  PubMed  Google Scholar 

  • Ball JM, Franklin CC, Tobin AE, Schulz DJ, Nair SS (2010) Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. J Neurosci 30:8637–8649

    Article  CAS  PubMed  Google Scholar 

  • De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375–400

    PubMed  Google Scholar 

  • Desai NS, Rutherford LC, Turrigiano GG (1999) Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci 2:515–520

    Article  CAS  PubMed  Google Scholar 

  • Franklin CC, Ball JM, Schulz DJ, Nair SS (2010) Generation and preservation of the slow underlying membrane potential oscillation in model bursting neurons. J Neurophysiol 104:1589–1602

    Article  PubMed  Google Scholar 

  • Galante M, Avossa D, Rosato-Siri M, Ballerini L (2001) Homeostatic plasticity induced by chronic block of AMPA/kainate receptors modulates the generation of rhythmic bursting in rat spinal cord organotypic cultures. Eur J Neurosci 14:903–917

    Article  CAS  PubMed  Google Scholar 

  • Golowasch J, Abbott LF, Marder E (1999) Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J Neurosci 19:RC33

    CAS  PubMed  Google Scholar 

  • Hudson AE, Prinz AA (2010) Conductance ratios and cellular identity. PLoS Comput Biol 6:e1000838

    Article  PubMed Central  PubMed  Google Scholar 

  • Khorkova O, Golowasch J (2007) Neuromodulators, not activity, control coordinated expression of ionic currents. J Neurosci Official J Soc Neurosci 27:8709–8718

    Article  CAS  Google Scholar 

  • LeMasson G, Marder E, Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science 259:1915–1917

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Golowasch J, Marder E, Abbott LF (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci Official J Soc Neurosci 18:2309–2320

    CAS  Google Scholar 

  • MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM (2003) Activity-independent homeostasis in rhythmically active neurons. Neuron 37:109–120

    Article  CAS  PubMed  Google Scholar 

  • Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998–4015

    Article  PubMed  Google Scholar 

  • Ransdell JL, Nair SS, Schulz DJ (2012) Rapid homeostatic plasticity of intrinsic excitability in a central pattern generator network stabilizes functional neural network output. J Neurosci Official J Soc Neurosci 32:9649–9658

    Article  CAS  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods. New York: Springer

    Book  Google Scholar 

  • Schulz DJ, Goaillard JM, Marder EE (2007) Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc Natl Acad Sci U S A 104:13187–13191

    Article  PubMed Central  PubMed  Google Scholar 

  • Soofi W, Archila S, Prinz AA (2012) Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons. J Comput Neurosci 33:77–95

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances determine electrophysiological properties in a multicompartment model. J Neurosci Official J Soc Neurosci 29:5573–5586

    Article  CAS  Google Scholar 

  • Temporal S, Desai M, Khorkova O, Varghese G, Dai A, Schulz DJ, Golowasch J (2012) Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. J Neurophysiol 107:718–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tobin AE, Cruz-Bermudez ND, Marder E, Schulz DJ (2009) Correlations in ion channel mRNA in rhythmically active neurons. PLoS One 4:e6742

    Article  PubMed Central  PubMed  Google Scholar 

  • Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

    CAS  PubMed  Google Scholar 

  • Turrigiano G, Abbott LF, Marder E (1994) Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264:974–977

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Schulz, D.J. (2014). Neuronal Parameter Co-regulation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_170-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_170-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics