Skip to main content

Neuronal Model Reduction

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 209 Accesses

Definition

The act of reducing the complexity of a mathematical neuron model while preserving its essential features.

Detailed Description

The biophysical description of ion channels distributed on a three-dimensional neuron membrane is a typical example of a complex mathematical neuron model. In such models, the voltage dependence of ion channels follows the formalism of Hodgkin and Huxley. Therefore, each patch of membrane is characterized by the membrane potential, x 1, and the state of activation/inactivation for every ion channel type, x 2, … , x n . These state variables evolve according to a differential equation arising from biophysics and biochemistry. The equations are typically of first order in time, but nonlinear. Given the nonlinear functions f 1, f 2, …, f n , the evolution of n state variables follows:

$$ \begin{array}{c}\frac{d{x}_1}{ dt}={f}_1\left({x}_1,{x}_2,\dots, {x}_n,{y}_1,{y}_2,\dots, {y}_k\right)\\ {}\frac{d{x}_2}{ dt}={f}_2\left({x}_1,{x}_2,\dots,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bialek W, Rieke F, van Steveninck RR, Warland D (1991) Reading a neural code. Science 252(5014):1854–1857

    Article  CAS  PubMed  Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642

    Article  PubMed  Google Scholar 

  • Chaturantabut S, Sorensen D (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764

    Article  Google Scholar 

  • Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12(2):199–213

    Article  CAS  PubMed  Google Scholar 

  • Eikenberry SE, Marmarelis VZ (2013) A nonlinear autoregressive Volterra model of the Hodgkin-Huxley equations. J Comput Neurosci 34(1):163–183

    Article  PubMed  Google Scholar 

  • Fitzhugh R (1961) Impulses and physiological states in models of nerve membrane. Biophys J 1(6):445–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern 55(2–3):135–144

    CAS  PubMed  Google Scholar 

  • Izhikevich EM (2003) Which model to use for cortical spiking neurons? IEEE Trans Neural Network 14(6):1569–1572

    Article  CAS  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Kellems AR, Roos D, Xiao N, Cox SJ (2009) Low-dimensional, morphologically accurate models of subthreshold membrane potential. J Comput Neurosci 27(2):161–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Kellems AR, Chaturantabut S, Sorensen DC, Cox SJ (2010) Morphologically accurate reduced order modeling of spiking neurons. J Comput Neurosci 28(3):477–494

    Article  PubMed  Google Scholar 

  • Kistler W, Gerstner W, van Hemmen L (1997) Reduction of the Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput 9(5):1015–1045

    Article  Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50(1):15–33

    Article  CAS  PubMed  Google Scholar 

  • Korenberg MJ, Hunter IW (1986) The identification of nonlinear biological systems: LNL cascade models. Biol Cybern 55(2–3):125–134

    CAS  PubMed  Google Scholar 

  • London M, Meunier C, Segev I (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J Neurosci 19(19):8219–8233

    CAS  PubMed  Google Scholar 

  • Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems: the white-noise approach. Plenum Press, New York

    Book  Google Scholar 

  • Marmarelis PZ, Naka KI (1973) Nonlinear analysis and synthesis of receptive-field responses in the catfish retinaI. Horizontal cell leads to ganglion cell chain. J Neurophysiol 36(4):605–618

    CAS  PubMed  Google Scholar 

  • Mel B (2007).Why have dendrites? A computational perspective. In: Stuart G, Spruston N (eds) Dendrites. Oxford University Press, Oxford

    Google Scholar 

  • Mensi S, Naud R, Pozzorini C, Averman M, Peterson CC, Gerstner W (2012) Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107(6):1756–1775

    Article  PubMed  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  • Naud R, Gerstner W (2012) Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram. PLoS Comput Biol 8(10):e1002711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paninski L (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Network 15(4):243–262

    Article  PubMed  Google Scholar 

  • Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1(1–2):39–60

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1995) The theoretical foundation of dendritic function: selected papers of Wilfrid Rall with commentaries. The MIT Press, Chicago

    Google Scholar 

  • Renart A, Brunel N, Wang XJ (2004). Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. In: Feng J (ed) Computational neuroscience: a comprehensive approach. Chapman & Hall/CRC, Boca Raton, pp 431–490

    Google Scholar 

Further Reading

  • Gerstner W, Kistler W, Naud R, Paninski L (2014) Neuronal dynamics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Naud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Naud, R. (2014). Neuronal Model Reduction. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_166-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_166-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics