Skip to main content

Vestibular Otoliths, Response to Vibration and Sound

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 308 Accesses

Definition

Vestibular receptors are hair cells, which are very similar in structure and operation to cochlear hair cells. Recently it has been shown that afferent nerves from otolithic receptor hair cells in the striola of the otolithic sense organs – the utricular and saccular maculae – respond to vibration and sound. That has quickly been translated to clinical application by measuring myogenic potentials elicited by sound and vibration. The saccular macula and the utricular macula have differential projections to various muscle groups, and that has been used to index the differential function of saccular and utricular maculae. The cervical vestibular evoked myogenic potential (cVEMP) indicates mainly the saccular function and the ocular vestibular evoked myogenic potential (oVEMP) indicates mainly the utricular function.

Detailed Description

Introduction

The otolithic receptors of the vestibular system of the inner ear (the utricular and saccular maculae) sense linear acceleration...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Colebatch JG, Halmagyi GM (1992) Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology 42(8):1635–1636

    Article  CAS  PubMed  Google Scholar 

  • Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57(2):190–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121(2):132–144

    Article  PubMed  Google Scholar 

  • Curthoys IS (2012) The interpretation of clinical tests of peripheral vestibular function. Laryngoscope 122(6):1342–1352

    Article  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V (2011) Vestibular primary afferent responses to sound and vibration in the guinea pig. Exp Brain Res 210(3–4):347–352

    Article  PubMed  Google Scholar 

  • Curthoys IS, Kim J, McPhedran SK, Camp AJ (2006) Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175(2):256–267

    Article  PubMed  Google Scholar 

  • Curthoys IS, Vulovic V, Burgess AM, Cornell ED, Mezey LE, MacDougall HG, Manzari L, McGarvie LA (2011) The basis for using bone-conducted vibration or air-conducted sound to test otolithic function. In: Rucker J, Zee DS (eds) Basic and clinical ocular motor and vestibular research, vol 1233. Annals of the New York Academy of Sciences, Boston, pp 231–241

    Google Scholar 

  • Curthoys IS, Vulovic V, Sokolic L, Pogson J, Burgess AM (2012) Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Brain Res Bull 89(1–2):16–21

    Article  PubMed  Google Scholar 

  • Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130(3):277–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwasaki S, McGarvie LA, Halmagyi GM, Burgess AM, Kim J, Colebatch JG, Curthoys IS (2007) Head taps evoke a crossed vestibulo-ocular reflex. Neurology 68(15):1227–1229

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, MacDougall HG, Halmagyi GM, Curthoys IS (2008a) Ocular vestibular evoked myogenic potentials in response to bone-conducted vibration of the midline forehead at Fz. Audiol Neuro Otol 13(6):396–404

    Article  CAS  Google Scholar 

  • Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, MacDougall HG, Halmagyi GM, Curthoys IS (2008b) Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol 119(9):2135–2147

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S, Chihara Y, Smulders YE, Burgess AM, Halmagyi GM, Curthoys IS, Murofushi T (2009) The role of the superior vestibular nerve in generating ocular vestibular-evoked myogenic potentials to bone conducted vibration at Fz. Clin Neurophysiol 120(3):588–593

    Article  CAS  PubMed  Google Scholar 

  • Manzari L, Burgess AM, Curthoys IS (2010a) Effect of bone-conducted vibration of the midline forehead (Fz) in unilateral vestibular loss (uVL). Evidence for a new indicator of unilateral otolithic function. Acta Otorhinolaryngol Ital 30(4):175–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manzari L, Tedesco A, Burgess AM, Curthoys IS (2010b) Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function. Otolaryngol Head Neck Surg 143(2):274–280

    Article  PubMed  Google Scholar 

  • Manzari L, Burgess AM, Curthoys IS (2012) Ocular and cervical vestibular evoked myogenic potentials in response to bone-conducted vibration in patients with probable inferior vestibular neuritis. J Laryngol Otol 126:683–691

    Article  CAS  PubMed  Google Scholar 

  • Rosengren SM, Kingma H (2013) New perspectives on vestibular evoked myogenic potentials. Curr Opin Neurol 26(1):74–80

    Article  PubMed  Google Scholar 

  • Rosengren SM, Todd NPM, Colebatch JG (2005) Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 116(8):1938–1948

    Article  CAS  PubMed  Google Scholar 

  • Shin B-S, Oh S-Y, Kim JS, Kim T-W, Seo M-W, Lee H, Park Y-A (2012) Cervical and ocular vestibular-evoked myogenic potentials in acute vestibular neuritis. Clin Neurophysiol 123(2):369–375

    Article  PubMed  Google Scholar 

  • Uchino Y, Sasaki M, Sato H et al (2005) Otolith and canal integration on single vestibular neurons in cats. Exp Brain Res 164:271–285

    Article  CAS  PubMed  Google Scholar 

  • Weber KP, Rosengren SM, Michels R, Sturm V, Straumann D, Landau K (2012) Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex. J Physiol Lond 590(13):3091–3101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Curthoys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Her Majesty the Queen in Right of Australia

About this entry

Cite this entry

Curthoys, I. (2014). Vestibular Otoliths, Response to Vibration and Sound. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_155-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_155-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics