Skip to main content

Decision Making, Countermanding Oculomotor Models

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 171 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akerfelt A, Colonius H, Diederich A (2006) Visual-tactile saccadic inhibition. Exp Brain Res 169(4):554–563

    Article  Google Scholar 

  • Armstrong IT, Munoz DP (2003) Inhibitory control of eye movements during oculomotor countermanding in adults with attention-deficit hyperactivity disorder. Exp Brain Res 152(4):444–452

    Article  CAS  Google Scholar 

  • Asrress KN, Carpenter RHS (2001) Saccadic countermanding: a comparison of central and peripheral stop signals. Vis Res 41:2645–2651

    Article  CAS  Google Scholar 

  • Bissett PG (2013) The countermanding task revisited: mimicry of race models. J Neurosci 33(30):12150–12151

    Article  CAS  Google Scholar 

  • Boucher L, Palmieri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114:376–397

    Article  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields: I. Single neurons discharging before saccades. J Neurophys 53:603–635

    Article  CAS  Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell C, Stanton GB (1985) Primate frontal eye fields: II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734

    Article  CAS  Google Scholar 

  • Cabel DW, Armstrong IT, Reingold E, Munoz DP (2000) Control of saccade initiation in a countermanding task using visual and auditory stop signals. Exp Brain Res 133(4):431–441

    Article  CAS  Google Scholar 

  • Cutsuridis V (2017) Behavioral and computational varieties of response inhibition in eye movements. Phil Trans R Soc B 372:20160196

    Article  Google Scholar 

  • Everling S, Munoz DP (2000) Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J Neurosci 20(1):387–400

    Article  CAS  Google Scholar 

  • Everling S, Dorris MC, Klein RM, Munoz DP (1999) Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J Neurosci 19:2740–2754

    Article  CAS  Google Scholar 

  • Farooqui AA, Bhutani N, Kulashekhar S, Behari M, Goel V, Murthy A (2011) Impaired conflict monitoring in Parkinson's disease patients during an oculomotor redirect task. Exp Brain Res 208(1):1–10. https://doi.org/10.1007/s00221-010-2432-y

    Article  PubMed  Google Scholar 

  • Gandhi NJ, Keller EL (1999) Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. J Neurophysiol 82:3254–3267

    Article  CAS  Google Scholar 

  • Hanes DP, Carpenter RH (1999) Countermanding saccades in humans. Vis Res 39(16):2777–2791

    Article  CAS  Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274:427–430

    Article  CAS  Google Scholar 

  • Hanes DP, Patterson WF, Schall JD (1998) Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J Neurophysiol 79(2):817–834

    Article  CAS  Google Scholar 

  • Hanisch C, Radach R, Holtkamp K, Herpertz-Dahlmann B, Konrad K (2006) Oculomotor inhibition in children with and without attention-deficit hyperactivity disorder (adhd). J Neural Transm 113(5):671–684

    Article  CAS  Google Scholar 

  • Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10:240–248

    Article  CAS  Google Scholar 

  • Isoda M, Hikosaka O (2008) A neural correlate of motivational conflict in the superior colliculus of the macaque. J Neurophysiol 100(3):1332–42

    Article  Google Scholar 

  • Lo CC, Boucher L, Pare M, Schall JD, Wang XJ (2009) Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model. J Neurosci 29(28):9059–9071

    Article  CAS  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Article  Google Scholar 

  • Logan GD, Yamaguchi M, Schall JD, Palmeri TJ (2015) Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding. Psychol Rev 122(2):115–147

    Article  Google Scholar 

  • Montagnini A, Chelazzi L (2009) Dynamic interaction between “Go” and “Stop” signals in the saccadic eye movement system: new evidence against the functional independence of the underlying neural mechanisms. Vis Res 49(10):1316–1328. https://doi.org/10.1016/j.visres.2008.07.018

    Article  PubMed  Google Scholar 

  • Morein-Zamir S, Kingstone A (2006) Fixation offset and stop signal intensity effects on saccadic countermanding: a crossmodal investigation. Exp Brain Res 175(3):453–462

    Article  Google Scholar 

  • Munoz D, Wurtz R (1993) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70:559–575

    Article  CAS  Google Scholar 

  • Munoz D, Wurtz R (1995a) Saccade related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol 73:2313–2333

    Article  CAS  Google Scholar 

  • Munoz D, Wurtz R (1995b) Saccade related activity in monkey superior colliculus. II. Spread of activity during saccades. J Neurophysiol 73:2334–2348

    Article  CAS  Google Scholar 

  • Noorani I (2014) LATER models of neural decision behavior in choice tasks. Front Integr Neurosci 8:67

    Article  Google Scholar 

  • Pare M, Hanes DP (2003) Controlled movement processing: superior colliculus activity associated with countermanded saccades. J Neurosci 23:6480–6489

    Article  CAS  Google Scholar 

  • Salinas E, Stanford TR (2013) The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J Neurosci 33(13):5668–5685

    Article  CAS  Google Scholar 

  • Scangos KW, Stuphorn V (2010) Medial frontal cortex motivates but does not control movement initiation in the countermanding task. J Neurophysiol 30:1968–1982

    CAS  Google Scholar 

  • Schall JD, Godlove DC (2012) Current advances and pressing problems in studies of stopping. Curr Opin Neurobiol 22:1012–1021

    Article  CAS  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and controls of visually guided eye movements. Ann Rev Neurosci 22:241–259

    Article  CAS  Google Scholar 

  • Segraves MA (1992) Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J Neurophysiol 68:1967–1985

    Article  CAS  Google Scholar 

  • Segraves MA, Goldberg ME (1987) Functional properties of corticotectal neurons in the monkey’s frontal eye field. J Neurophysiol 58:1387–1419

    Article  CAS  Google Scholar 

  • Shankar S, Massoglia DP, Zhu D, Costello MG, Stanford TR, Salinas E (2011) Tracking the temporal evolution of a perceptual judgment using a compelled-response task. J Neurosci 31(23):8406–8421

    Article  CAS  Google Scholar 

  • Sommer MA, Wurtz RH (2000) Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol 83:1979–2001

    Article  CAS  Google Scholar 

  • Stevenson SA, Elsley JK, Corneil BD (2009) A “gap effect” on stop signal reaction times in a human saccadic countermanding task. J Neurophysiol 101(2):580–590. https://doi.org/10.1152/jn.90891.2008

    Article  PubMed  Google Scholar 

  • Stuphorn V, Taylor TL, Schall LD (2000) Performance monitoring by the supplementary eye field. Nature 408:857–860

    Article  CAS  Google Scholar 

  • Thakkar KN, Schall JD, Boucher L, Logan GD, Park S (2011) Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biol Psychiatry 69(1):55–62. https://doi.org/10.1016/j.biopsych.2010.08.016

    Article  PubMed  Google Scholar 

  • Thakkar KN, Schall JD, Logan GD, Park S (2015) Cognitive control of gaze in bipolar disorder and schizophrenia. Psychiatry Res 225(3):254–262. https://doi.org/10.1016/j.psychres.2014.12.033

    Article  PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2009) Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev 33(5):647–661

    Article  Google Scholar 

  • Wattiez N, Poitou T, Rivaud-Péchoux S, Pouget P (2016) Evidence for spatial tuning of movement inhibition. Exp Brain Res 234(7):1957–1966. https://doi.org/10.1007/s00221-016-4594-8

    Article  PubMed  Google Scholar 

  • Wong-Lin KF, Eckhoff P, Holmes P, Cohen JD (2010) Optimal performance in a countermanding saccade task. Brain Res 1318:178–187

    Article  CAS  Google Scholar 

Further Reading

    Scholarpedia

    Wikipedia

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Vassilis Cutsuridis .

    Editor information

    Editors and Affiliations

    Section Editor information

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2019 Springer Science+Business Media, LLC, part of Springer Nature

    About this entry

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this entry

    Cutsuridis, V. (2019). Decision Making, Countermanding Oculomotor Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_100679-1

    Download citation

    • DOI: https://doi.org/10.1007/978-1-4614-7320-6_100679-1

    • Received:

    • Accepted:

    • Published:

    • Publisher Name: Springer, New York, NY

    • Print ISBN: 978-1-4614-7320-6

    • Online ISBN: 978-1-4614-7320-6

    • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

    Publish with us

    Policies and ethics