Skip to main content

Decision-Making, Antisaccade Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 165 Accesses

Definition

The antisaccade task in its most typical form (the visually guided antisaccade; Fig. 1) is a reaction time task in which subjects are instructed to perform an immediate eye movement in the opposite direction to a peripheral stimulus, which is presented in their right or left visual field, while they are fixating on a central stimulus (Hallett 1978). Variations of the typical antisaccade (gap antisaccade and overlap antisaccade; Fig. 1) in the horizontal or vertical plane were designed over the years to investigate the effect of the fixation stimulus on the decision to move (Goldring and Fischer 1997; Forbes and Klein 1996; Fischer et al. 1997).

Fig. 1
figure 1

Basic design of the antisaccade task. Typically a participant starts each trial fixating on a stimulus. When a target stimulus appears, the participant must make an eye movement in the opposite direction (antisaccade) of the target stimulus. Visually guided antisaccade: the antisaccade is performed immediately after fixation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aichert DS, Derntl B, Wöstmann NM, Groß JK, Dehning S, Cerovecki A, Möller HJ, Habel U, Riedel M, Ettinger U (2013) Intact emotion-cognition interaction in schizophrenia patients and first-degree relatives: evidence from an emotional antisaccade task. Brain Cogn 82(3):329–336

    Article  PubMed  Google Scholar 

  • Amador N, Schlag-Rey M, Schlag J (2004) Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance. J Neurophysiol 91:1672–1689

    Article  PubMed  Google Scholar 

  • Amador SC, Hood AJ, Schiess MC, Izor R, Sereno AB (2006) Dissociating cognitive deficits involved in voluntary eye movement dysfunctions in Parkinson’s disease patients. Neuropsychologia 44:1475–1482

    Article  PubMed  Google Scholar 

  • Antoniades C, Ettinger U, Gaymard B, Gilchrist I, Kristjánsson A, Kennard C, John Leigh R, Noorani I, Pouget P, Smyrnis N, Tarnowski A, Zee DS, Carpenter RH (2013) An internationally standardised antisaccade protocol. Vis Res 84:1–5. https://doi.org/10.1016/j.visres.2013.02.007

    Article  PubMed  Google Scholar 

  • Antoniades CA, Demeyere N, Kennard C, Humphreys GW, Hu MT (2015) Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: the discovery study. Mov Disord 30:843–847

    Article  PubMed  Google Scholar 

  • Aponte EA, Schöbi D, Stephan KE, Heinzle J (2017) The stochastic early reaction, inhibition, and late action (SERIA) model for antisaccades. PLoS Comput Biol 13(8):e1005692. https://doi.org/10.1371/journal.pcbi.1005692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrwind SD, Dafotakis M, Halfter S, Hobusch K, Berthold-Losleben M, Cieslik EC, Eickhoff SB (2011) Executive control in chronic schizophrenia: a perspective from manual stimulus-response compatibility task performance. Behav Brain Res 223(1):24–29

    Article  PubMed Central  PubMed  Google Scholar 

  • Boudet C, Bocca ML, Chabot B, Delamillieure P, Brazo P, Denise P, Dollfus S (2005) Are eye movement abnormalities indicators of genetic vulnerability to schizophrenia? Eur Psychiatry 30:339–345

    Article  Google Scholar 

  • Boxer AL, Garbutt S, Seeley WW, Jafari A, Heuer HW, Mirsky J, Hellmuth J, Trojanowski JQ, Huang E, DeArmond S, Neuhaus J, Miller BL (2012) Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch Neurol 69:509–517

    Article  PubMed Central  PubMed  Google Scholar 

  • Broerse A, Crawford TJ, den Boer JA (2001) Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia 39:742–756

    Article  CAS  PubMed  Google Scholar 

  • Brownstein J, Krastoshevsky O, McCollum C, Kundamal S, Matthysse S, Holzman PS, Mendell NR, Levy DL (2003) Antisaccade performance is abnormal in schizophrenia patients, but not in their biological relatives. Schizophr Res 63:13–25

    Article  PubMed  Google Scholar 

  • Burke JG, Reveley MA (2002) Improved antisaccade performance with risperidone in schizophrenia. J Neurol Neurosurg Psychiatry 72:449–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burrell JR, Hornberger M, Carpenter RHS, Kiernan MC, Hodges JR (2012) Saccadic abnormalities in frontotemporal dementia. Neurology 78:1816–1823

    Article  CAS  PubMed  Google Scholar 

  • Cameron IGM, Watanabe M, Pari G, Munoz DP (2010) Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia 48:1948–1957

    Article  PubMed  Google Scholar 

  • Cameron IGM, Pari G, Alahyane N, Brien DC, Coe BC, Stroman PW, Munoz DP (2012) Impaired executive function signals in motor brain regions in Parkinson’s disease. NeuroImage 60:1156–1170

    Article  PubMed  Google Scholar 

  • Carvalho N, Noiret N, Vandel P, Monnin J, Chopard G, Laurent E (2014) Saccadic eye movements in depressed elderly patients. PLoS One 9:e105355

    Article  PubMed Central  PubMed  Google Scholar 

  • Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ (2005) The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 29:399–419

    Article  CAS  PubMed  Google Scholar 

  • Chan F, Armstrong IT, Pari G, Riopelle RJ, Munoz DP (2005) Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia 43:784–796

    Article  PubMed  Google Scholar 

  • Clough M, Millist L, Lizak N, Beh S, Frohman TC, Frohman EM, White OB, Fielding J (2015) Ocular motor measures of cognitive dysfunction in multiple sclerosis I: inhibitory control. J Neurol 262:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Coe BC, Munoz DP (2017) Mechanisms of saccade suppression revealed in the antisaccade task. Philos Trans R Soc Lond Ser B Biol Sci 372(1718):20160192. https://doi.org/10.1098/rstb.2016.0192

    Article  Google Scholar 

  • Curtis CE, Calkins ME, Iacono WG (2001a) Saccadic disinhibition in schizophrenia patients and their first-degree biological relatives: a parametric study of the effects of increasing inhibitory load. Exp Brain Res 137:228–236

    Article  CAS  PubMed  Google Scholar 

  • Curtis CE, Calkins ME, Grove WM, Feil KJ, Iacono WG (2001b) Saccadic disinhibition in patients with acute and remitted schizophrenia and their first-degree biological relatives. Am J Psychiatr 158:100–106

    Article  CAS  PubMed  Google Scholar 

  • Cutsuridis V (2010) Neural accumulator models of decision making in eye movements. Adv Exp Med Biol 657:61–72

    Article  PubMed  Google Scholar 

  • Cutsuridis V (2017a) Behavioral and computational varieties of response inhibition in eye movements. Philos Trans R Soc Lond Ser B Biol Sci 372(1718):20160196. https://doi.org/10.1098/rstb.2016.0196

    Article  Google Scholar 

  • Cutsuridis V (2017b) A neural accumulator model of antisaccade performance of healthy controls and obsessive-compulsive disorder patients. In: vanVugt MK, Banks AP, Kennedy WG (eds) Proceedings of the 15th international conference on cognitive modeling. University of Warwick, Coventry, pp 85–90

    Google Scholar 

  • Cutsuridis V, Smyrnis N, Evdokimidis I, Perantonis S (2007a) A neural network model of decision making in an antisaccade task by the superior colliculus. Neural Netw 20(6):690–704

    Article  PubMed  Google Scholar 

  • Cutsuridis V, Kahramanoglou I, Smyrnis N, Evdokimidis I, Perantonis S (2007b) A neural variable integrator model of decision making in an antisaccade task. Neurocomputing 70(7-9):1390–1402

    Article  Google Scholar 

  • Cutsuridis V, Kumari V, Ettinger U (2014) Antisaccade performance in schizophrenia: a neural model of decision making in the superior colliculus. Front Neurosci 8:13. https://doi.org/10.3389/fnins.2014.00013

    Article  PubMed  PubMed Central  Google Scholar 

  • Damilou A, Apostolakis S, Thrapsanioti E, Theleritis C, Smyrnis N (2016) Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder. Psychophysiology 53(6):796–805. https://doi.org/10.1111/psyp.12630

    Article  PubMed  Google Scholar 

  • Depatie L, O’Driscoll GA, Holahan AL, Atkinson V, Thavundayll JX, Kin NNY, Lai S (2002) Nicotine and behavioral markers of risk for schizophrenia: a double-blind, placebo-controlled, cross-over study. Neuropsychopharmacology 27:1056–1070

    Article  CAS  PubMed  Google Scholar 

  • deWilde OM, Dingemans P, Boeree T, Linszen D (2008) Antisaccade deficit is present in young first-episode patients with schizophrenia but not in their healthy young siblings. Psychol Med 38:871–875

    CAS  Google Scholar 

  • Dursun SM, Wright N, Reveley MA (1999) Effects of amphetamine on saccadic eye movements in man: possible relevance to schizophrenia? J Psychopharmacol 13(3):245–247

    Article  CAS  PubMed  Google Scholar 

  • Ettinger U, Kumari V, Crawford TJ, Davis RE, Sharma T, Corr PJ (2003) Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology 40:620–628

    Article  PubMed  Google Scholar 

  • Ettinger U, Kumari V, Chitnis XA, Corr PJ, Crawford TJ, Fannon DG, O’Ceallaigh SO, Sumich AL, Doku VC, Sharma T (2004) Volumetric neural correlates of antisaccade eye movements in first-episode psychosis. Am J Psychiatr 161:1918–1921

    Article  PubMed  Google Scholar 

  • Evdokimidis I, Smyrnis N, Constantinidis TS, Stefanis NC, Avramopoulos D, Paximadis C et al (2002) The antisaccade task in a sample of 2006 young men I. Normal population characteristics. Exp Brain Res 147:45–52

    Article  CAS  PubMed  Google Scholar 

  • Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36:885–899

    Article  CAS  PubMed  Google Scholar 

  • Everling S, Munoz DP (2000) Neuronal correlates for preparatory set associated with prosaccades and antisaccades in the primate frontal eye fields. J Neurosci 20:387–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Everling S, Dorris MC, Klein RM, Munoz DP (1999) Role of primate superior colliculus in preparation and execution of antisaccades and prosaccades. J Neurosci 19:2740–2754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Everling S, Johnston K (2013) Control of the superior colliculus by the lateral prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 368(1628):20130068

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer B, Weber H (1992) Characteristics of antisaccades in man. Exp Brain Res 89(2):415–424

    Article  CAS  PubMed  Google Scholar 

  • Fischer B, Gezeck S, Hartnegg K (1997) The analysis of saccadic eye movements from gap and overlap paradigms. Brain Res Brain Res Protoc 2(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Forbes K, Klein RM (1996) The magnitude of the fixation offset effect with endogenously and exogenously controlled saccades. J Cogn Neurosci 8(4):344–52

    Article  CAS  PubMed  Google Scholar 

  • Fukushima J, Fukushima K, Chiba T, Tanaka S, Yamashita I, Kato M (1988) Disturbances of voluntary control of saccadic eye movements in schizophrenic patients. Biol Psychiatry 23:670–677

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Chafee MV, Goldman-Rakic PS (1993) Prefrontal neuronal activity in rhesus monkeys performing a delayed antisaccade task. Nature 395:753–756

    Article  Google Scholar 

  • Gottlieb J, Goldberg ME (1999) Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat Neurosci 2(10):906–912

    Article  CAS  PubMed  Google Scholar 

  • Green CR, Munoz DP, Nikkel SM, Reynolds JN (2007) Deficits in eye movement control in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 31:500–511

    Article  PubMed  Google Scholar 

  • Green JF, King DJ (1998) The effects of chlorpromazine and lorazepam on abnormal antisaccade and no-saccade distractibility. Biol Psychiatry 44(8):709–715

    Article  CAS  PubMed  Google Scholar 

  • Green JF, King DJ, Trimble KM (2000) Antisaccade and smooth pursuit eye movements in healthy subjects receiving sertraline and lorazepam. J Psychopharmacol 14(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Grootens KP, van Luijtelaar G, Buitelaar JK, van der Laan A, Hummelen JW, Verkes RJ (2008) Inhibition errors in borderline personality disorder with psychotic-like symptoms. Prog Neuro-Psychopharmacol Biol Psychiatry 32:267–273

    Article  Google Scholar 

  • Goldring J, Fischer B (1997) Reaction times of vertical prosaccades and antisaccades in gap and overlap tasks. Exp Brain Res 113(1):88–103

    Article  CAS  PubMed  Google Scholar 

  • Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58:455–472

    Article  CAS  PubMed  Google Scholar 

  • Hakvoort Schwerdtfeger RM, Alahyane N, Brien DC, Coe BC, Stroman PW, Munoz DP (2013) Preparatory neural networks are impaired in adults with attention-deficit/hyperactivity disorder during the antisaccade task. NeuroImage Clin 2:63–78

    Article  Google Scholar 

  • Hallett PR (1978) Primary and secondary saccades to goals defined by instructions. Vision Res 18:1279–1296

    Article  CAS  PubMed  Google Scholar 

  • Heuer HW, Mirsky JB, Kong EL, Dickerson BC, Miller BL, Kramer JH, Boxer AL (2013) Antisaccade task reflects cortical involvement in mild cognitive impairment. Neurology 81:1235–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgson T, Chamberlain M, Parris B, James M, Gurowski N, Husain M, Kennard C (2007) The role of the ventrolateral frontal cortex in inhibitory oculomotor control. Brain 130:1525–1537

    Article  PubMed  Google Scholar 

  • Hutton SB (2002) Improved antisaccade performance in schizophrenia with risperidone. Commentary. J Neurol Neurosurg Psychiatry 72:429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutton SB, Crawford TJ, Puri BK, Duncan L-J, Chapman M, Kennard C, Barnes TRE, Joyce EM (1998) Smooth pursuit and saccadic abnormalities in first-episode schizophrenia. Psychol Med 28:685–692

    Article  CAS  PubMed  Google Scholar 

  • Hutton SB, Joyce EM, Barnes TR, Kennard C (2002) Saccadic distractibility in first episode schizophrenia. Neuropsychologia 40:1729–1736

    Article  CAS  PubMed  Google Scholar 

  • Jahanshahi M, Rothwell JC (2017) Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. Philos Trans R Soc B 372:20160198

    Article  Google Scholar 

  • Kang SS, Dionisio DP, Sponheim SR (2011) Abnormal mechanisms of antisaccade generation in schizophrenia patients and unaffected biological relatives of schizophrenia patients. Psychophysiology 48(3):350–361

    Article  PubMed Central  PubMed  Google Scholar 

  • Karoumi B, Ventre-Dominey J, Vighetto A, Dalery J, d’Amato T (1998) Saccadic eye movements in schizophrenia patients. Psych Res 77:9–19

    Article  CAS  Google Scholar 

  • Kaufman LD, Pratt J, Levine B, Black SE (2012) Executive deficits detected in mild Alzheimer’s disease using the antisaccade task. Brain Behav 2:15–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirenskaya AV, Kamenskov MY, Myamlin VV, Novototsky-Vlasov VY, Tkachenko AA (2013) The antisaccade task performance deficit and specific CNV abnormalities in patients with stereotyped paraphilia and schizophrenia. J Forensic Sci 58(5):1219–1226

    Article  PubMed  Google Scholar 

  • Klein C, Foerster F (2001) Development of prosaccade and antisaccade task performance in participants aged 6 to 26 years. Psychophysiology 38(2):179–189

    Article  CAS  PubMed  Google Scholar 

  • Kloft L, Kischkel E, Kathmann N, Reuter B (2011) Evidence for a deficit in volitional action generation in patients with obsessive compulsive disorder. Psychophysiology 48:755–761. https://doi.org/10.1111/j.1469-8986.2010.01138.x

    Article  PubMed  Google Scholar 

  • Larrison-Faucher AL, Matorin AA, Sereno AB (2004) Nicotine reduces antisaccade errors in task impaired schizophrenic subjects. Prog Neuro-Psychopharmacol Biol Psychiatry 28:505–516

    Article  CAS  Google Scholar 

  • Lennertz L, Rampacher F, Vogeley A, Schulze-Rauschenbach S, Pukrop R, Ruhrmann S et al (2012) Antisaccade performance in patients with obsessive-compulsive disorder and unaffected relatives: further evidence for impaired response inhibition as a candidate endophenotype. Eur Arch Psychiatry Clin Neurosci 262:625–634. https://doi.org/10.1007/s00406-012-0311-1

    Article  PubMed  Google Scholar 

  • Levy DL, Mendell NR, Holzman PS (2004) The antisaccade task and neuropsychological tests of prefrontal cortical integrity in schizophrenia: empirical findings and interpretative considerations. World Psychiatry 3:32–40

    PubMed  PubMed Central  Google Scholar 

  • Lo CC, Wang XJ (2016) Conflict resolution as near-threshold decision-making: a spiking neural circuit model with two-stage competition for antisaccadic task. PLoS Comput Biol 12(8):e1005081. https://doi.org/10.1371/journal.pcbi.1005081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn J, Donovan T, Litchfield D, Lewis C, Davies R, Crawford T (2016) Saccadic eye movement abnormalities in children with epilepsy. PLoS One 11(8):e0160508. https://doi.org/10.1371/journal.pone.0160508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malsert J, Guyader N, Chauvin A, Polosan M, Poulet E, Szekely D, Bougerol T, Marendaz C (2012) Antisaccades as a follow-up tool in major depressive disorder therapies: a pilot study. Psychiatry Res 200:1051–1053

    Article  PubMed  Google Scholar 

  • Maruff P, Purcell R, Tyler P, Pantelis C, Currie J (1999) Abnormalities of internally generated saccades in obsessive-compulsive disorder. Psychol Med 29:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Massen C (2004) Parallel programming of exogenous and endogenous components in the antisaccade task. Q J Exp Pscyhol A 57:475–498

    Article  Google Scholar 

  • Meeter M, Van der Stigchel S, Theeuwes J (2010) A competitive integration of exogenous and endogenous eye movements. Biol Cybern 102(4):271–291

    Article  PubMed  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: the antisaccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Istvan PJ (1998) Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J Neurophysiol 79:1193–1209

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Wurtz RH (1993) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70(2):559–75

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Wurtz R (1995a) Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol 73:2313–2333

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Wurtz R (1995b) Saccade related activity in monkey superior colliculus. II. Spread of activity during saccades. J Neurophysiol 73:2334–2348

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Broughton JR, Goldring JE, Armstrong IT (1998) Age-related performance of human subjects on saccadic eye movement tasks. Exp Brain Res 121(4):391–400

    Article  CAS  PubMed  Google Scholar 

  • Munoz DP, Armstrong IT, Hampton KA, Moore KD (2003) Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J Neurophysiol 90:503–514

    Article  PubMed  Google Scholar 

  • Noorani I, Carpenter RH (2013) Antisaccades as decisions: LATER model predicts latency distributions and error responses. Eur J Neurosci 37(2):330–338

    Article  CAS  PubMed  Google Scholar 

  • Noorani I, Carpenter RH (2014) Re-starting a neural race: anti-saccade correction. Eur J Neurosci 39(1):159–164

    Article  PubMed  Google Scholar 

  • Paolozza A, Titman R, Brien D, Munoz DP, Reynolds JN (2013) Altered accuracy of saccadic eyemovements in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res 37:1491–1498

    Article  PubMed  Google Scholar 

  • Peltsch A, Hoffman A, Armstrong I, Pari G, Munoz DP (2008) Saccadic impairments in Huntington’s disease. Exp Brain Res 186:457–469

    Article  CAS  PubMed  Google Scholar 

  • Peltsch A, Hemraj A, Garcia A, Munoz DP (2011) Age-related trends in saccade characteristics among the elderly. Neurobiol Aging 32(4):669–679

    Article  CAS  PubMed  Google Scholar 

  • Peltsch A, Hemraj A, Garcia A, Munoz DP (2014) Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. Eur J Neurosci 39:2000–2013

    Article  PubMed  Google Scholar 

  • Petrovsky N, Ettinger U, Quednow BB, Walter H, Schnell K, Kessler H, Mössner R, Maier W, Wagner M (2012) Nicotine differentially modulates antisaccade performance in healthy male non-smoking volunteers stratified for low and high accuracy. Psychopharmacology 221(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Petrovsky N, Ettinger U, Quednow BB, Landsberg MW, Drees J, Lennertz L, Frommann I, Heilmann K, Sträter B, Kessler H, Dahmen N, Mössner R, Maier W, Wagner M (2013) Nicotine enhances antisaccade performance in schizophrenia patients and healthy controls. Int J Neuropsychopharmacol 16(7):1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Johnston K, Everling S (2010) Effects of anterior cingulate microstimulation on pro- and antisaccades in nonhuman primates. J Cogn Neurosci 23(2):481–490

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny CH, Ploner CJ, Muri RM, Gaymard B, Rivaud-Pechoux S (2002) Effects of cortical lesions on saccadic: eye movements in humans. Ann N Y Acad Sci 956:216–229

    Article  PubMed  Google Scholar 

  • Radant AD, Dobie DJ, Calkins ME, Olincy A, Braff DL, Cadenhead KS, Freedman R, Green MF, Greenwood TA, Gur RE, Gur RC, Light GA, Meichle SP, Millard SP, Mintz J, Nuechterlein KH, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang MT, Turetsky BI, Tsuang DW (2010) Antisaccade performance in schizophrenia patients, their first-degree biological relatives, and community comparison subjects: data from the COGS study. Psychophysiology 47(5):846–856

    PubMed  PubMed Central  Google Scholar 

  • Reddi BA, Carpenter RH (2000) The influence of urgency on decision time. Nat Neurosci 3(8):827–30

    Article  CAS  PubMed  Google Scholar 

  • Rycroft N, Hutton SB, Clowry O, Groomsbridge C, Sierakowski A, Rusted JM (2007) Non-cholinergic modulation of antisaccade performance: a modafinil-nicotine comparison. Psychopharmacology 195:245–253

    Article  CAS  PubMed  Google Scholar 

  • Schlag-Rey M, Amador N, Sanchez H, Schlag J (1997) Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390:398–401

    Article  CAS  PubMed  Google Scholar 

  • Schall JD (1997) Visuomotor areas of the frontal lobe. Cereb. Cortex 12:527–638

    Article  Google Scholar 

  • Smyrnis N, Evdokimidis I, Stefanis NC, Constantinidis TS, Avramopoulos D, Theleritis C et al (2002) The antisaccade task in a sample of 2006 young men. II. Effects of task parameters. Exp Brain Res 147:53–63

    Article  CAS  PubMed  Google Scholar 

  • Soncin S, Brien DC, Coe BC, Marin A, Munoz DP (2016) Contrasting emotion processing and executive functioning in attention-deficit/hyperactivity disorder and bipolar disorder. Behav Neurosci 130:531–543

    Article  PubMed  Google Scholar 

  • Tatler BW, Hutton SB (2007) Trial-by-trial effects in the antisaccade task. Exp Brain Res 179:387–396

    Article  PubMed  Google Scholar 

  • Theleritis C, Evdokimidis I, Smyrnis N (2014) Variability in the decision process leading to saccades: a specific marker for schizophrenia? Psychophysiology 51:327–336. https://doi.org/10.1111/psyp.12178

    Article  PubMed  Google Scholar 

  • Tien AY, Pearlson GD, Machlin SR, Bylsma FW, Hoehn-Saric R (1992) Oculomotor performance in obsessive-compulsive disorder. Am J Psychiatr 149:641–646

    Article  CAS  PubMed  Google Scholar 

  • Trappenberg TP, Dorris MC, Munoz DP, Klein RM (2001) A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci 13(2):256–271

    Article  CAS  PubMed  Google Scholar 

  • van der Wee NJ, Hardeman HH, Ramsey NF, Raemaekers M, Van Megen HJ, Denys DA et al (2006) Saccadic abnormalities in psychotropic-naive obsessive-compulsive disorder without co-morbidity. Psychol Med 36:1321–1326. https://doi.org/10.1017/s0033291706007926

    Article  PubMed  Google Scholar 

  • Wiecki TV, Antoniades CA, Stevenson A, Kennard C, Borowsky B, Owen G, Leavitt B, Roos R, Durr A, Tabrizi SJ, Frank MJ (2016) A computational cognitive biomarker for early-stage Huntington’s disease. PLoS One 11(2):e0148409. https://doi.org/10.1371/journal.pone.0148409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witiuk K, Fernandez-Ruiz J, McKee R, Alahyane N, Coe BC, Melanson M, Munoz DP (2014) Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J Neurosci 34:14260–14271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zanelli J, Simon H, Rabe-Hesketh S, Walshe M, McDonald C, Murray RM, MacCabe JH (2005) Eye tracking in schizophrenia: does the antisaccade task measure anything that the smooth pursuit task does not? Psychiatry Res 136:181–188

    Article  PubMed  Google Scholar 

  • Zanelli J, MacCabe J, Toulopoulou T, Walshe M, McDonald C, Murray R (2009) Neuropsychological correlates of eye movement abnormalities in schizophrenic patients and their unaffected relatives. Psychiatry Res 168(3):193–197

    Article  PubMed  Google Scholar 

Further Reading

    Scholarpedia

    Wikipedia

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Vassilis Cutsuridis .

    Editor information

    Editors and Affiliations

    Section Editor information

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2018 Springer Science+Business Media, LLC, part of Springer Nature

    About this entry

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this entry

    Cutsuridis, V. (2018). Decision-Making, Antisaccade Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_100675-1

    Download citation

    • DOI: https://doi.org/10.1007/978-1-4614-7320-6_100675-1

    • Received:

    • Accepted:

    • Published:

    • Publisher Name: Springer, New York, NY

    • Print ISBN: 978-1-4614-7320-6

    • Online ISBN: 978-1-4614-7320-6

    • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

    Publish with us

    Policies and ethics