Skip to main content

Calcium Dysregulation in Neurodegenerative Diseases

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 155 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aliev G, Priyadarshini M, P Reddy V, Grieg NH, Kaminsky Y, Cacabelos R et al (2014) Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 21(19):2208–2217

    Article  CAS  Google Scholar 

  • Anastasio TJ (2014) Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-β on synaptic plasticity. Front Pharmacol 5(85)

    Google Scholar 

  • Anwar H (2016) Capturing intracellular Ca2+ dynamics in computational models of neurodegenerative diseases. Drug Discov Today Dis Model 19:37–42

    PubMed  Google Scholar 

  • Area-Gomez E, Schon EA (2016) Mitochondria-associated ER membranes and Alzheimer disease. Curr Opin Genet Dev 38:90–96

    Article  CAS  Google Scholar 

  • Area-Gomez E, Groof A, Bonilla E, Montesinos J, Tanji K, Boldogh I et al (2018) A key role for MAM is mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 9(3):335

    Google Scholar 

  • Bernard-Marissal N, Moumen A, Sunyach C, Pellegrino C, Dudley K, Henderson CE et al (2012) Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 32(14):4901–4912

    Article  CAS  Google Scholar 

  • Bernard-Marissal N, Chrast R, Schneider BL (2018) Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis 9(333):1–16

    Google Scholar 

  • Betzer C, Lassen LB, Olsen A, Kofoed RH, Reimer L, Gregersen E et al (2018) Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep 19(5):e44617

    Article  Google Scholar 

  • Bezprozvanny I (2013) Presenilins and calcium signaling-systems biology to the rescue. Sci Signal 6(283):pe24

    Article  Google Scholar 

  • Bruno AM, Huang JY, Bennett DA, Marr RA, Hastings ML, Stutzmann GE (2012) Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 33(5):1001.e1–1001.e6

    Article  Google Scholar 

  • Cali T, Ottolini D, Negro A, Brini M (2012) Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287(22):17914–17929

    Article  CAS  Google Scholar 

  • Cozzolino M, Carrì MT (2012) Mitochondrial dysfunction in ALS. Prog Neurobiol 97(2):54–66

    Article  CAS  Google Scholar 

  • Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921

    Article  Google Scholar 

  • Davey GP, Bolaños JP (2013) Peroxiredoxin 5 links mitochondrial redox signalling with calcium dynamics: impact on Parkinson’s disease. J Neurochem 125(3):332–333

    Article  CAS  Google Scholar 

  • De Caluwé J, Dupont G (2013) The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca2+. J Theor Biol 331:12–18

    Article  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464

    Article  CAS  Google Scholar 

  • Dolgacheva LP, Fedotova EI, Abramov AY, Berezhnov AV (2018) Alpha-synuclein and mitochondrial dysfunction in Parkinson’s disease. Biochem (Mosc) Suppl Ser A Membr Cell Biol 12(1):10–19

    Article  Google Scholar 

  • Eikelenboom P, van Exel E, Hoozemans JJM, Veerhuis R, Rozemuller AJM, van Gool WA (2010) Neuroinflammation – an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis 7(1–3):38–41

    Article  CAS  Google Scholar 

  • Gibson GE (2017) Interactions of mitochondria/metabolism and calcium regulation in Alzheimer’s disease: a calcinist point of view. Neurochem Res 42(6):1636–1648

    Article  CAS  Google Scholar 

  • Good TA, Murphy RM (1996) Effect of beta-amyloid block of the fast-inactivating K+ channel on intracellular Ca2+ and excitability in a modeled neuron. Proc Natl Acad Sci U S A 93(26):15130–15135

    Article  CAS  Google Scholar 

  • Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47(2):165–174

    Article  CAS  Google Scholar 

  • Guardia-Laguarta C, Area-Gomez E, Rüb C, Liu Y, Magrané J, Becker D et al (2014) α-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34(1):249–259

    Article  CAS  Google Scholar 

  • Guerrero-Hernández A, Ávila G, Rueda A (2014) Ryanodine receptors as leak channels. Eur J Pharmacol 739:26–38

    Article  Google Scholar 

  • Hedskog L, Pinho CM, Filadi R, Rönnbäck A, Hertwig L, Wiehager B et al (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci 110(19):7916–7921

    Article  CAS  Google Scholar 

  • Kelliher M, Fastbom J, Cowburn RF, Bonkale W, Ohm TG, Ravid R et al (1999) Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and beta-amyloid pathologies. Neuroscience 92(2):499–513

    Article  CAS  Google Scholar 

  • Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ et al (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14(6):781–795

    Article  CAS  Google Scholar 

  • Koffie RM, Hyman BT, Spires-Jones TL (2011) Alzheimer’s disease: synapses gone cold. Mol Neurodegener 6(1):63

    Article  Google Scholar 

  • Le Masson G, Przedborski S, Abbott LF (2014) A computational model of motor neuron degeneration. Neuron 83(4):975–988

    Article  Google Scholar 

  • Lieberman OJ, Choi SJ, Kanter E, Saverchenko A, Frier MD, Fiore GM et al (2017) α-Synuclein-dependent calcium entry underlies differential sensitivity of cultured SN and VTA dopaminergic neurons to a parkinsonian neurotoxin. eNeuro 4(6):e0167–17.2017

    Article  Google Scholar 

  • Ludtmann MHR, Abramov AY (2018) Mitochondrial calcium imbalance in Parkinson’s disease. Neurosci Lett 663:86–90

    Article  CAS  Google Scholar 

  • Mackay JP, Nassrallah WB, Raymond LA (2018) Cause or compensation?-Altered neuronal Ca2+ handling in Huntington’s disease. CNS Neurosci Ther 24(4):301–310

    Article  CAS  Google Scholar 

  • Manfredi G, Kawamata H (2016) Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol Dis 90:35–42

    Article  CAS  Google Scholar 

  • Marhl M, Haberichter T, Brumen M, Heinrich R (2000) Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Bio Systems 57(2):75–86

    Article  CAS  Google Scholar 

  • Matsuzawa T, Zalányi L, Kiss T, Érdi P (2017) Multi-scale modeling of altered synaptic plasticity related to amyloid β effects. Neural Netw 93:230–239

    Article  Google Scholar 

  • Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2010) Abnormal excitability of oblique dendrites implicated in early Alzheimer’s: a computational study. Frontiers in Neural Circuits 4(16)

    Google Scholar 

  • Naia L, Ferreira IL, Ferreiro E, Rego AC (2017) Biochemical and biophysical research communications. Biochem Biophys Res Commun 483(4):1069–1077

    Article  CAS  Google Scholar 

  • Panov AV, Gutekunst C-A, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5(8):731–736

    Article  CAS  Google Scholar 

  • Popugaeva E, Pchitskaya E, Bezprozvanny I (2017) Biochemical and biophysical research communications. Biochem Biophys Res Commun 483(4):998–1004

    Article  CAS  Google Scholar 

  • Post MR, Lieberman OJ, Mosharov EV (2018) Can interactions between α-synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s disease? Front Neurosci 12:182

    Article  Google Scholar 

  • Ranjan B, Chong KH, Zheng J (2018) Composite mathematical modeling of calcium signaling behind neuronal cell deathin Alzheimer’s disease. BMC Syst Biol 12(10):1–14

    Google Scholar 

  • Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50(3):222–233

    Article  CAS  Google Scholar 

  • Raymond LA (2016) Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 483(4):1051–1062

    Article  Google Scholar 

  • Reese LC, Laezza F, Woltjer R, Taglialatela G (2011) Dysregulated phosphorylation of Ca(2+) /calmodulin-dependent protein kinase II-α in the hippocampus of subjects with mild cognitive impairment and Alzheimer’s disease. J Neurochem 119(4):791–804

    Article  CAS  Google Scholar 

  • Romani A, Marchetti C, Bianchi D, Leinekugel X, Poirazi P, Migliore M, Marie H (2013) Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses. Front Comput Neurosci 7(1)

    Google Scholar 

  • Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer’s disease. Front Comput Neurosci 8:39

    Article  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68(18):1501–1508

    Article  CAS  Google Scholar 

  • Smith, E. F., Shaw, P. J., & De Vos, K. J. (2017). The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett, 1–17 (in press)

    Google Scholar 

  • Szopa P, Dyzma M, Kaźmierczak B (2013) Membrane associated complexes in calcium dynamics modelling. Phys Biol 10(3):035004

    Article  Google Scholar 

  • Good TA, Smith DO, Murphy RM (1996) Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophys J 70(1):296–304

    Article  CAS  Google Scholar 

  • Tang T-S, Tu H, Chan EYW, Maximov A, Wang Z, Wellington CL et al (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39(2):227–239

    Article  CAS  Google Scholar 

  • Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R et al (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci 102(7):2602–2607

    Article  CAS  Google Scholar 

  • Tang T-S, Guo C, Wang H, Chen X, Bezprozvanny I (2009) Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model. J Neurosci 29(5):1257–1266

    Article  CAS  Google Scholar 

  • Tofaris GK (2012) Lysosome-dependent pathways as a unifying theme in Parkinson’s disease. Mov Disord 27(11):1364–1369

    Article  CAS  Google Scholar 

  • Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee S-F, Hao Y-H et al (2006) Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126(5):981–993

    Article  CAS  Google Scholar 

  • Walker AK, Soo KY, Sundaramoorthy V, Parakh S, Ma Y, Farg MA et al (2013) ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS One 8(11):e81170

    Article  Google Scholar 

  • Wang Y, Shi Y, Wei H (2017) Calcium dysregulation in Alzheimer’s disease: a target for new drug development. J Alzheimer Dis Parkinsonism 7(5)

    Google Scholar 

  • Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I (2016) Enhanced store-operated calcium entry leads to striatal synaptic loss in a Huntington’s disease mouse model. J Neurosci 36(1):125–141

    Article  CAS  Google Scholar 

  • Zhang Y-J, Jansen-West K, Xu Y-F, Gendron TF, Bieniek KF, Lin W-L et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128(4):505–524

    Article  CAS  Google Scholar 

Download references

Acknowledgment

HA receives financial support from Princeton Neuroscience Institute. Parts of the text are adapted from Anwar (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroon Anwar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anwar, H. (2018). Calcium Dysregulation in Neurodegenerative Diseases. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_100666-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_100666-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics