Skip to main content

Auditory Perceptual Organization

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Auditory perceptual grouping; Auditory scene analysis; Cocktail party problem; Sound source separation

Definition

The process of extracting acoustic features from sound waves and partitioning them into meaningful groups

Detailed Description

Introduction

Traveling pressure waves (i.e., sounds) are produced by the movements or actions of objects. So sounds primarily convey information about what is happening in the environment. In addition, some information about the structure of the environment and the surface features of objects can be extracted by determining how the original (self-generated or exogenous) sounds are filtered or distorted by the environment (e.g., the notion of “acoustic daylight,” Fay 2009). In this entry we consider how the auditory systems process sound signals to extract information about the environment and the objects within it.

The auditory system faces a number of specific challenges which need to be considered in any account of perceptual...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agus TR, Thorpe SJ, Pressnitzer D (2010) Rapid formation of robust auditory memories: insights from noise. Neuron 66(4):610–618

    CAS  PubMed  Google Scholar 

  • Alain C, Schuler BM, McDonald KL (2002) Neural activity associated with distinguishing concurrent auditory objects. J Acoust Soc Am 111(2):990–995

    PubMed  Google Scholar 

  • Anstis S, Saida S (1985) Adaptation to auditory streaming of frequency-modulated tones. J Exp Psychol Hum Percept Perform 11:257–271

    Google Scholar 

  • Assmann PF, Summerfield Q (1989) Modeling the perception of concurrent vowels: vowels with the same fundamental frequency. J Acoust Soc Am 85(1):327–338

    CAS  PubMed  Google Scholar 

  • Assmann PF, Summerfield Q (1990) Modeling the perception of concurrent vowels: vowels with different fundamental frequencies. J Acoust Soc Am 88(2):680–697

    CAS  PubMed  Google Scholar 

  • Bar M (2007) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11(7):280–289

    PubMed  Google Scholar 

  • Bar-Yosef O, Rotman Y, Nelken I (2002) Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J Neurosci 22(19):8619–8632

    CAS  PubMed  Google Scholar 

  • Beauvois MW, Meddis R (1991) A computer model of auditory stream segregation. Q J Exp Psychol A 43(3):517–541

    CAS  PubMed  Google Scholar 

  • Bee MA (2012) Sound source perception in anuran amphibians. Curr Opin Neurobiol 22(2):301–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bee MA, Klump GM (2005) Auditory stream segregation in the songbird forebrain: effects of time intervals on responses to interleaved tone sequences. Brain Behav Evol 66(3):197–214

    PubMed  Google Scholar 

  • Bee MA, Micheyl C, Oxenham AJ, Klump GM (2010) Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(8):543–557

    PubMed Central  PubMed  Google Scholar 

  • Bendixen A, Schröger E, Winkler I (2009) I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. J Neurosci 29(26):8447–8451

    CAS  PubMed  Google Scholar 

  • Bendixen A, Denham SL, Gyimesi K, Winkler I (2010a) Regular patterns stabilize auditory streams. J Acoust Soc Am 128(6):3658–3666

    PubMed  Google Scholar 

  • Bendixen A, Jones SJ, Klump G, Winkler I (2010b) Probability dependence and functional separation of the object-related and mismatch negativity event-related potential components. Neuroimage 50(1):285–290

    PubMed  Google Scholar 

  • Bendixen A, Bőhm TM, Szalárdy O, Mill R, Denham SL, Winkler I (2012) Different roles of similarity and predictability in auditory stream segregation. J Learn Percept (in press)

    Google Scholar 

  • Bertrand O, Tallon-Baudry C (2000) Oscillatory gamma activity in humans: a possible role for object representation. Int J Psychophysiol 38(3):211–223

    CAS  PubMed  Google Scholar 

  • Bőhm TM, Shestopalova L, Bendixen A, Andreou AG, Georgiou J, Garreau G, Pouliquen P, Cassidy A, Denham SL, Winkler I (2012) Spatial location of sound sources biases auditory stream segregation but their motion does not. J Learn Percept (in press)

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT, Cambridge, MA

    Google Scholar 

  • Brown GJ, Wang DL (eds) (2006) Neural and perceptual modelling. Computational auditory scene analysis: principles, algorithms, and applications. Wiley/IEEE Press, Chichester

    Google Scholar 

  • Brunswik E (1955) Representative design and probabilistic theory in a functional psychology. Psychol Rev 62(3):193–217

    CAS  PubMed  Google Scholar 

  • Carlyon RP (2004) How the brain separates sounds. Trends Cogn Sci 8(10):465–471

    PubMed  Google Scholar 

  • Ciocca V (2008) The auditory organization of complex sounds. Front Biosci 13:148–169

    PubMed  Google Scholar 

  • Culling JF, Summerfield Q (1995) Perceptual separation of concurrent speech sounds: absence of across-frequency grouping by common interaural delay. J Acoust Soc Am 98(2 Pt 1):785–797

    CAS  PubMed  Google Scholar 

  • Cusack R (2005) The intraparietal sulcus and perceptual organization. J Cogn Neurosci 17(4):641–651

    PubMed  Google Scholar 

  • Darwin CJ, Carlyon RP (1995) Auditory grouping. In: Moore BCJ (ed) The handbook of perception and cognition: hearing, vol 6. Academic, London, pp 387–424

    Google Scholar 

  • Darwin CJ, Hukin RW, al-Khatib BY (1995) Grouping in pitch perception: evidence for sequential constraints. J Acoust Soc Am 98(2 Pt 1):880–885

    CAS  PubMed  Google Scholar 

  • de Cheveigne A, McAdams S, Laroche J, Rosenberg M (1995) Identification of concurrent harmonic and inharmonic vowels: a test of the theory of harmonic cancellation and enhancement. J Acoust Soc Am 97(6):3736–3748

    PubMed  Google Scholar 

  • Deike S, Heil P, Böckmann-Barthel M, Brechmann A (2012) The build-up of auditory stream segregation: a different perspective. Front Psychol 3:461

    PubMed Central  PubMed  Google Scholar 

  • Denham SL, Winkler I (2006) The role of predictive models in the formation of auditory streams. J Physiol Paris 100(1–3):154–170

    CAS  PubMed  Google Scholar 

  • Denham SL, Gymesi K, Stefanics G, Winkler I (2012) Multistability in auditory stream segregation: the role of stimulus features in perceptual organisation. J Learn Percept (in press)

    Google Scholar 

  • Duncan J, Humphreys G (1989) Visual search and stimulus similarity. Psychol Rev 96:433–458

    CAS  PubMed  Google Scholar 

  • Elhilali M, Shamma SA (2008) A cocktail party with a cortical twist: how cortical mechanisms contribute to sound segregation. J Acoust Soc Am 124(6):3751–3771

    PubMed Central  PubMed  Google Scholar 

  • Elhilali M, Ma L, Micheyl C, Oxenham AJ, Shamma SA (2009) Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron 61(2):317–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fay R (2009) Soundscapes and the sense of hearing of fishes. Integr Zool 4(1):26–32

    PubMed  Google Scholar 

  • Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116(3):1656–1670

    PubMed  Google Scholar 

  • Fowler CA, Rosenblum LD (1990) Duplex perception: a comparison of monosyllables and slamming doors. J Exp Psychol Hum Percept Perform 16(4):742–754

    CAS  PubMed  Google Scholar 

  • Friston K, Kiebel S (2009) Predictive coding under the free-energy principle. Philos Trans R Soc Lond B Biol Sci 364(1521):1211–1221

    PubMed Central  PubMed  Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5(11):887–892

    CAS  PubMed  Google Scholar 

  • Griffiths TD, Warren JD, Scott SK, Nelken I, King AJ (2004) Cortical processing of complex sound: a way forward? Trends Neurosci 27(4):181–185

    CAS  PubMed  Google Scholar 

  • Grimault N, Bacon SP, Micheyl C (2002) Auditory stream segregation on the basis of amplitude-modulation rate. J Acoust Soc Am 111(3):1340–1348

    PubMed  Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25(22):5382–5388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann WM, Johnson D (1991) Stream segregation and peripheral channeling. Music Percept 9(2):153–183

    Google Scholar 

  • Haykin S, Chen Z (2005) The cocktail party problem. Neural Comput 17(9):1875–1902

    PubMed  Google Scholar 

  • Helmholtz H (1885) On the sensations of tone as a physiological basis for the theory of music. Longmans, Green, London

    Google Scholar 

  • Hupe JM, Pressnitzer D (2012) The initial phase of auditory and visual scene analysis. Philos Trans R Soc Lond B Biol Sci 367(1591):942–953

    PubMed Central  PubMed  Google Scholar 

  • Jones MR (1976) Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychol Rev 83:323–355

    CAS  PubMed  Google Scholar 

  • Jones MR, Kidd G, Wetzel R (1981) Evidence for rhythmic attention. J Exp Psychol Hum Percept Perform 7:1059–1073

    CAS  PubMed  Google Scholar 

  • Kashino M, Kondo HM (2012) Functional brain networks underlying perceptual switching: auditory streaming and verbal transformations. Philos Trans R Soc Lond B Biol Sci 367(1591):977–987

    PubMed Central  PubMed  Google Scholar 

  • Kayser C, Petkov CI, Lippert M, Logothetis NK (2005) Mechanisms for allocating auditory attention: an auditory saliency map. Curr Biol 15(21):1943–1947

    CAS  PubMed  Google Scholar 

  • Köhler W (1947) Gestalt psychology: an introduction to new concepts in modern psychology. Liveright Publishing Corporation, New York

    Google Scholar 

  • Kondo HM, Kashino M (2009) Involvement of the thalamocortical loop in the spontaneous switching of percepts in auditory streaming. J Neurosci 29(40):12695–12701

    CAS  PubMed  Google Scholar 

  • Kovacs I, Papathomas TV, Yang M, Feher A (1996) When the brain changes its mind: interocular grouping during binocular rivalry. Proc Natl Acad Sci USA 93(26):15508–15511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubovy M, Van Valkenburg D (2001) Auditory and visual objects. Cognition 80(1–2):97–126

    CAS  PubMed  Google Scholar 

  • Laing CR, Chow CC (2002) A spiking neuron model for binocular rivalry. J Comput Neurosci 12(1):39–53

    PubMed  Google Scholar 

  • Large EW, Jones MR (1999) The dynamics of attending: how people track time-varying events. Psychol Rev 106:119–159

    Google Scholar 

  • Leopold DA, Logothetis NK (1999) Multistable phenomena: changing views in perception. Trends Cogn Sci 3(7):254–264

    PubMed  Google Scholar 

  • Levelt WJM (1968) On binocular rivalry. Mouton, Paris

    Google Scholar 

  • McCabe SL, Denham MJ (1997) A model of auditory streaming. J Acoust Soc Am 101(3):1611–1621

    Google Scholar 

  • McDermott JH, Oxenham AJ (2008) Music perception, pitch, and the auditory system. Curr Opin Neurobiol 18(4):452–463

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDermott JH, Wrobleski D, Oxenham AJ (2011) Recovering sound sources from embedded repetition. Proc Natl Acad Sci USA 108(3):1188–1193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48(1):139–148

    CAS  PubMed  Google Scholar 

  • Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Courtenay Wilson E (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229(1–2):116–131

    PubMed Central  PubMed  Google Scholar 

  • Mill R, Bőhm T, Bendixen A, Winkler I, Denham SL (2013) Competition and cooperation between fragmentary event predictors in a model of auditory scene analysis. PLoS Comput Biol (in press)

    Google Scholar 

  • Miller GA, Licklider JCR (1950) The intelligibility of interrupted speech. J Acoust Soc Am 22:167–173

    Google Scholar 

  • Moore BCJ, Gockel HE (2002) Factors influencing sequential stream segregation. Acta Acust 88:320–333

    Google Scholar 

  • Moore BC, Gockel HE (2012) Properties of auditory stream formation. Philos Trans R Soc Lond B Biol Sci 367(1591):919–931

    PubMed Central  PubMed  Google Scholar 

  • Moore BC, Glasberg BR, Peters RW (1986) Thresholds for hearing mistuned partials as separate tones in harmonic complexes. J Acoust Soc Am 80(2):479–483

    CAS  PubMed  Google Scholar 

  • Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 125(6):826–859

    PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329

    Google Scholar 

  • Nager W, Teder-Sälejärvi W, Kunze S, Münte TF (2003) Preattentive evaluation of multiple perceptual streams in human audition. Neuroreport 14(6):871–874

    PubMed  Google Scholar 

  • Nakajima Y, Sasaki T, Kanafuka K, Miyamoto A, Remijn G, ten Hoopen G (2000) Illusory recouplings of onsets and terminations of glide tone components. Percept Psychophys 62(7):1413–1425

    CAS  PubMed  Google Scholar 

  • Nelken I (2008) Processing of complex sounds in the auditory system. Curr Opin Neurobiol 18(4):413–417

    CAS  PubMed  Google Scholar 

  • Nelken I, Fishbach A, Las L, Ulanovsky N, Farkas D (2003) Primary auditory cortex of cats: feature detection or something else? Biol Cybern 89(5):397–406

    PubMed  Google Scholar 

  • Oertel D, Fay RR, Popper AN (2002) Integrative functions in the mammalian auditory pathway. Springer, New York

    Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Pressnitzer D, Hupe JM (2006) Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Curr Biol 16(13):1351–1357

    CAS  PubMed  Google Scholar 

  • Rand TC (1974) Letter: dichotic release from masking for speech. J Acoust Soc Am 55(3):678–680

    CAS  PubMed  Google Scholar 

  • Rensink RA (2000) Seeing, sensing, and scrutinizing. Vision Res 40(10–12):1469–1487

    CAS  PubMed  Google Scholar 

  • Riecke L, Van Opstal AJ, Formisano E (2008) The auditory continuity illusion: a parametric investigation and filter model. Percept Psychophys 70(1):1–12

    PubMed  Google Scholar 

  • Roberts B, Glasberg BR, Moore BC (2002) Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. J Acoust Soc Am 112(5 Pt 1):2074–2085

    PubMed  Google Scholar 

  • Schadwinkel S, Gutschalk A (2011) Transient bold activity locked to perceptual reversals of auditory streaming in human auditory cortex and inferior colliculus. J Neurophysiol 105(5):1977–1983

    PubMed  Google Scholar 

  • Schwartz JL, Grimault N, Hupe JM, Moore BC, Pressnitzer D (2012) Multistability in perception: binding sensory modalities, an overview. Philos Trans R Soc Lond B Biol Sci 367(1591):896–905

    PubMed Central  PubMed  Google Scholar 

  • Shamma SA, Elhilali M (2013)

    Google Scholar 

  • Shamma SA, Micheyl C (2010) Behind the scenes of auditory perception. Curr Opin Neurobiol 20(3):361–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shamma SA, Elhilali M, Micheyl C (2011) Temporal coherence and attention in auditory scene analysis. Trends Neurosci 34(3):114–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shamma S, Elhilali M, Ma L, Micheyl C, Oxenham AJ, Pressnitzer D, Yin P, Xu Y (2013) Temporal coherence and the streaming of complex sounds. Adv Exp Med Biol 787:535–543

    PubMed  Google Scholar 

  • Shinn-Cunningham BG (2008) Object-based auditory and visual attention. Trends Cogn Sci 12(5):182–186

    PubMed Central  PubMed  Google Scholar 

  • Shpiro A, Moreno-Bote R, Rubin N, Rinzel J (2009) Balance between noise and adaptation in competition models of perceptual bistability. J Comput Neurosci 27(1):37–54

    PubMed Central  PubMed  Google Scholar 

  • Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133(5):780–799

    PubMed  Google Scholar 

  • Summerfield Q, Assmann PF (1991) Perception of concurrent vowels: effects of harmonic misalignment and pitch-period asynchrony. J Acoust Soc Am 89(3):1364–1377

    CAS  PubMed  Google Scholar 

  • Sussman ES, Ritter W, Vaughan HG Jr (1999) An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology 36(1):22–34

    CAS  PubMed  Google Scholar 

  • Szalárdy O, Bendixen A, Tóth D, Denham SL, Winkler I (2012) Modulation-frequency acts as a primary cue for auditory stream segregation. J Learn Percept (in press)

    Google Scholar 

  • Szalárdy O, Bőhm T, Bendixen A, Winkler I (2013) Perceptual organization affects the processing of incoming sounds: an ERP study. Biol Psychol (in press)

    Google Scholar 

  • Takegata R, Brattico E, Tervaniemi M, Varyagina O, Naatanen R, Winkler I (2005) Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects. Brain Res Cogn Brain Res 25(1):169–179

    PubMed  Google Scholar 

  • Teki S, Chait M, Kumar S, von Kriegstein K, Griffiths TD (2011) Brain bases for auditory stimulus-driven figure-ground segregation. J Neurosci 31(1):164–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Treisman A (1998) Feature binding, attention and object perception. Philos Trans R Soc Lond B Biol Sci 353:1295–1306

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Ee R (2009) Stochastic variations in sensory awareness are driven by noisy neuronal adaptation: evidence from serial correlations in perceptual bistability. J Opt Soc Am A Opt Image Sci Vis 26(12):2612–2622

    PubMed  Google Scholar 

  • van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. Doctoral dissertation, Technical University Eindhoven

    Google Scholar 

  • Vliegen J, Oxenham AJ (1999) Sequential stream segregation in the absence of spectral cues. J Acoust Soc Am 105(1):339–346

    CAS  PubMed  Google Scholar 

  • von Ehrenfels C (1890) Über Gestaltqualitäten (English “On the qualities of form”). Vierteljahrsschr Wiss Philos 14:249–292

    Google Scholar 

  • von Kriegstein K, Smith DR, Patterson RD, Ives DT, Griffiths TD (2007) Neural representation of auditory size in the human voice and in sounds from other resonant sources. Curr Biol 17(13):1123–1128

    Google Scholar 

  • Wang DL, Brown GJ (2006) Computational auditory scene analysis: principles, algorithms, and applications. Wiley/IEEE Press, New York

    Google Scholar 

  • Wang DL, Chang PS (2008) An oscillatory correlation model of auditory streaming. Cogn Neurodyn 2:7–19

    PubMed Central  PubMed  Google Scholar 

  • Warren RM, Wrightson JM, Puretz J (1988) Illusory continuity of tonal and infratonal periodic sounds. J Acoust Soc Am 84(4):1338–1342

    CAS  PubMed  Google Scholar 

  • Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5(6):598–604

    CAS  PubMed  Google Scholar 

  • Wertheimer M (1912) Experimentelle Studien über das Sehen von Bewegung. Z Psychol 60

    Google Scholar 

  • Wilson EC, Melcher JR, Micheyl C, Gutschalk A, Oxenham AJ (2007) Cortical FMRI activation to sequences of tones alternating in frequency: relationship to perceived rate and streaming. J Neurophysiol 97(3):2230–2238

    PubMed Central  PubMed  Google Scholar 

  • Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21:147–163

    Google Scholar 

  • Winkler I (2010) In search for auditory object representations. In: Winkle I, Czigler I (eds) Unconscious memory representations in perception: processes and mechanisms in the brain. John Benjamins, Amsterdam, pp 71–106

    Google Scholar 

  • Winkler I, Cowan N (2005) From sensory to long-term memory: evidence from auditory memory reactivation studies. Exp Psychol 52(1):3–20

    PubMed  Google Scholar 

  • Winkler I, Czigler I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int J Psychophysiol 83(2):132–143

    PubMed  Google Scholar 

  • Winkler I, Sussman E, Tervaniemi M, Horváth J, Ritter W, Näätänen R (2003a) Preattentive auditory context effects. Cogn Affect Behav Neurosci 3(1):57–77

    PubMed  Google Scholar 

  • Winkler I, Teder-Salejarvi WA, Horváth J, Näätänen R, Sussman E (2003b) Human auditory cortex tracks task-irrelevant sound sources. Neuroreport 14(16):2053–2056

    PubMed  Google Scholar 

  • Winkler I, Czigler I, Sussman E, Horvath J, Balazs L (2005a) Preattentive binding of auditory and visual stimulus features. J Cogn Neurosci 17(2):320–339

    PubMed  Google Scholar 

  • Winkler I, Takegata R, Sussman E (2005b) Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Brain Res Cogn Brain Res 25(1):291–299

    PubMed  Google Scholar 

  • Winkler I, van Zuijen TL, Sussman E, Horvath J, Naatanen R (2006) Object representation in the human auditory system. Eur J Neurosci 24(2):625–634

    PubMed Central  PubMed  Google Scholar 

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13(12):532–540

    PubMed  Google Scholar 

  • Winkler I, Denham S, Mill R, Bohm TM, Bendixen A (2012) Multistability in auditory stream segregation: a predictive coding view. Philos Trans R Soc Lond B Biol Sci 367(1591):1001–1012

    PubMed Central  PubMed  Google Scholar 

  • Yildiz IB, Kiebel SJ (2011) A hierarchical neuronal model for generation and online recognition of birdsongs. PLoS Comput Biol 7(12):e1002303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuo G, Yu X (2011) Auditory feature binding and its hierarchical computational model. In: Third international conference on artificial intelligence and computational intelligence. Springer

    Google Scholar 

  • Zwicker E, Fastl H (1999) Psychoacoustics. Facts and models. Springer, Heidelberg/New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Denham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Denham, S., Winkler, I. (2014). Auditory Perceptual Organization. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_100-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_100-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics