Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Spatiotemporal Personalized Recommendation of Social Media Content

  • Bee-Chung ChenEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_325-1




The situation (which includes time, geographical location, location of a web page, etc.) in which recommendations are made to a user.


Information (about a user, an item, and the context in which the item may be recommended to the user) that can be used to predict the response rate.


A set of nodes connected by a set of edges.


A web page on which recommended items are placed.


A system that recommends items (e.g., news articles, blog posts) to users.

Response rate

The probability that a user would respond positively to (e.g., click, share) a recommended item.


Social media sites (like twitter.com, digg.com, blogger.com) complement traditional media by incorporating content generated by regular people and allowing users to interact with content through sharing, commenting,...


Recommender System Latent Dirichlet Allocation News Article Content Item Candidate Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17:734–749CrossRefGoogle Scholar
  2. Agarwal D, Chen BC (2009) Regression-based latent factor models. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, KDD ‘09, pp 19–28, DOI 10.1145/1557019.1557029., URL http://doi.acm.org/10.1145/1557019.1557029
  3. Agarwal D, Chen BC, Elango P (2009) Spatio-temporal models for estimating click-through rate. In: Proceedings of the 18th international conference on World wide web, ACM, New York, NY, USA, WWW ‘09, pp 21–30, DOI 10.1145/1526709.1526713., URL http://doi.acm.org/10.1145/1526709.1526713
  4. Agarwal D, Chen BC, Elango P (2010) Fast online learning through offline initialization for time-sensitive recommendation. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, KDD ‘10, pp 703–712, DOI 10.1145/1835804.1835894., URL http://doi.acm.org/10.1145/1835804.1835894
  5. Agarwal D, Chen BC, Elango P, Wang X (2011a) Click shaping to optimize multiple objectives. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, KDD ‘11, pp 132–140, DOI 10.1145/2020408.2020435., URL http://doi.acm.org/10.1145/2020408.2020435
  6. Agarwal D, Chen BC, Long B (2011b) Localized factor models for multi-context recommendation. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, KDD ‘11, pp 609–617, DOI 10.1145/2020408.2020504., URL http://doi.acm.org/10.1145/2020408.2020504
  7. Agrawal R, Imielin’ski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, ACM, New York, NY, USA, SIGMOD ‘93, pp 207–216, DOI 10.1145/170035.170072., URL http://doi.acm.org/10.1145/170035.170072
  8. Ahmed A, Low Y, Aly M, Josifovski V, Smola AJ (2011) Scalable distributed inference of dynamic user interests for behavioral targeting. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA, KDD ‘11, pp 114–122, DOI 10.1145/2020408.2020433., URL http://doi.acm.org/10.1145/2020408.2020433
  9. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022. URL http://dl.acm.org/citation.cfm?id=944919.944937 zbMATHGoogle Scholar
  10. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New YorkCrossRefzbMATHGoogle Scholar
  11. Hu B, Jamali M, Ester M (2013) Spatio-temporal topic modeling in mobile social media for location recommendation. In: 2013 I.E. 13th International Conference on Data Mining, IEEE, pp 1073–1078Google Scholar
  12. Jamali M, Ester M (2010) A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the fourth ACM conference on Recommender systems, ACM, New York, NY, USA, RecSys ‘10, pp 135–142, DOI 10.1145/1864708.1864736., URL http://doi.acm.org/10.1145/1864708.1864736
  13. Jannach D, Zanker M, Felfernig A, Friedrich G (2010) Recommender systems: an introduction. Cambridge University Press, New York. URL http://books.google.com/books?id=eygTJBd U2cC
  14. Kaplan AM, Haenlein M (2010) Users of the world, unite! the challenges and opportunities of social media. Bus Horiz 53(1):59–68. doi:10.1016/j.bushor.2009.09.003. URL http://www.sciencedirect.com/science/article/pii/S0007681309001232 CrossRefGoogle Scholar
  15. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30–37CrossRefGoogle Scholar
  16. Ricci F, Rokach L, Shapira B, Kantor PB (eds) (2015) Recommender systems handbook. Springer, New York. http://www.springer.com/us/book/9781489976369
  17. Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM 18(11):613–620. doi:10.1145/361219.361220. URL http://doi.acm.org/10.1145/361219.361220 CrossRefzbMATHGoogle Scholar
  18. Xiong L, Chen X, Huang TK, Schneider JG, Carbonell JG (2010) Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: Proceedings of the SIAM International Conference on Data Mining, SDM 2010, April 29–May 1, 2010, Columbus, Ohio, USA, pp 211–222Google Scholar
  19. Yin H, Cui B (2016) Spatio-temporal recommendation in Social Media. Springer, Singapore. http://www.springer.com/us/book/9789811007477
  20. Yuan Q, Cong G, Zhao K, Ma Z, Sun A (2015) Who, where, when, and what: a nonparametric bayesian approach to context-aware recommendation and search for twitter users. ACM Trans Inf Syst (TOIS) 33(1):2CrossRefGoogle Scholar
  21. Zheng VW, Cao B, Zheng Y, Xie X, Yang Q (2010) Collaborative filtering meets mobile recommendation: a user-centered approach. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp 236–241Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.LinkedInSunnyvaleUSA

Section editors and affiliations

  • Gao Cong
    • 1
  • Bee-Chung Chen
    • 2
  1. 1.Nanyang Technological University (NTU)SingaporeSingapore
  2. 2.LinkedInMountain ViewUnited States