Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Pajek and PajekXXL

  • Vladimir Batagelj
  • Andrej MrvarEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_310-1



BOM (byte order mark)

A Unicode character used to signal the byte order of a text file or stream


Critical path method

GEDCOM (GEnealogical Data COMmunications)

A genealogical software interchange format


Graphical user interface


Multidimensional scaling


Operations research


Network data set on social networks prepared for Viszards session at Sunbelt XXVIII, 2008


Social network analysis


STRuctural ANalysis

SVG (Scalable Vector Graphics)

A WWW picture format


The name of the international character set


Visualization of similarities


Virtual reality

Tool’s ID Card

  • Tool name, title: Pajek and PajekXXL, program for analysis and visualization of large networks

  • Creation year: November 1996

  • Authors: Vladimir Batagelj and Andrej Mrvar

  • Range: general network problems with emphasis on large networks

  • Copyright: free for noncommercial use

  • Typ...

This is a preview of subscription content, log in to check access.



The work was supported in part by the ARRS, Slovenia, grant P1-0294, as well as by grant N1-0011 within the EUROCORES Programme EUROGIGA (project GReGAS) of the European Science Foundation.


  1. Ahmed A, Batagelj V, Fu X, Hong S-H, Merrick D, Mrvar A (2007) Visualisation and analysis of the Internet movie database. In: Asia-Pacific symposium on visualisation 2007, Sydney, Australia, 5–7 February 2007 (IEEE Cat. No. 07EX1615), pp 17–24Google Scholar
  2. Batagelj V (1987) Data structure graph. Eight Yugoslav seminar on graph theory, Novi Sad, 17–18 Apr 1987. Institute of Mathematics, Novi Sad, p 4Google Scholar
  3. Batagelj V (1994) Semirings for social networks analysis. J Math Sociol 19(1):53–68MathSciNetCrossRefzbMATHGoogle Scholar
  4. Batagelj V (1997) Notes on blockmodeling. Soc Netw 19:143–155CrossRefGoogle Scholar
  5. Batagelj V (2003) Efficient algorithms for citation network analysis. http://arxiv.org/abs/cs.DL/0309023
  6. Batagelj V, Brandes U (2005) Efficient generation of large random networks. Phys Rev E 71(3 Part 2):036113, 1–5CrossRefGoogle Scholar
  7. Batagelj V, Cerinšek M (2013) On bibliographic networks. Scientometrics 96(3):845–864CrossRefGoogle Scholar
  8. Batagelj V, Mrvar A (1998) Pajek: a program for large network analysis. Connections 21(2):47–57Google Scholar
  9. Batagelj V, Mrvar A (2000) Some analyses of Erdös collaboration graph. Soc Netw 22:173–186CrossRefGoogle Scholar
  10. Batagelj V, Mrvar A (2001) A subquadratic triad census algorithm for large sparse networks with small maximum degree. Soc Netw 23(3):237–243CrossRefGoogle Scholar
  11. Batagelj V, Mrvar A (2003) Density based approaches to network analysis: analysis of Reuters terror news network. In: Workshop on link analysis for detecting complex behavior (LinkKDD2003), Washington, DC, 27 Aug 2003. http://www-2.cs.cmu.edu/~dunja/LinkKDD2003/papers/Batagelj.pdf
  12. Batagelj V, Mrvar A (2008) Analysis of kinship relations with Pajek. Soc Sci Comput Rev 26(2):224–246CrossRefGoogle Scholar
  13. Batagelj V, Praprotnik S (2016) An algebraic approach to temporal network analysis based on temporal quantities. Soc Netw Anal Min 6(1):1–22CrossRefzbMATHGoogle Scholar
  14. Batagelj V, Zaveršnik M (2007) Short cycle connectivity. Discret Math 307(3–5):310–318MathSciNetCrossRefzbMATHGoogle Scholar
  15. Batagelj V, Zaveršnik M (2011) Fast algorithms for determining (generalized) core groups in social networks. Adv Data Anal Classif 5(2):129–145MathSciNetCrossRefzbMATHGoogle Scholar
  16. Batagelj V, Doreian P, Ferligoj A (1992a) An optimizational approach to regular equivalence. Soc Netw 14(1–2):121–135CrossRefGoogle Scholar
  17. Batagelj V, Ferligoj A, Doreian P (1992b) Direct and indirect methods for structural equivalence. Soc Netw 14(1–2):63–90CrossRefGoogle Scholar
  18. Batagelj V, Mrvar A, Zaveršnik M (1999) Partitioning approach to visualization of large graphs. In: Graph drawing, 1999, Stiřin Castle, Czech Republic, September 1999. Lecture notes in computer science, vol 1731/1999. Springer, Berlin, Heidelberg, pp 90–97Google Scholar
  19. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp.  https://doi.org/10.1088/1742–5468/2008/10/P10008
  20. Brusco M, Doreian P, Mrvar A, Steinley D (2011) Two algorithms for relaxed structural balance partitioning: linking theory, models, and data to understand social network phenomena. Sociol Methods Res 40:57–87MathSciNetCrossRefGoogle Scholar
  21. Burt RS (1992) Structural holes. The social structure of competition. Harvard University Press, CambridgeGoogle Scholar
  22. Cormen T, Leiserson C, Rivest R (1990) Introduction to algorithms. McGraw-Hill, New YorkzbMATHGoogle Scholar
  23. Doreian P, Mrvar A (1996) A partitioning approach to structural balance. Soc Netw 18:149–168CrossRefGoogle Scholar
  24. Doreian P, Mrvar A (2009) Partitioning signed social networks. Soc Netw 31(1):1–11CrossRefzbMATHGoogle Scholar
  25. Doreian P, Mrvar A (2014) Testing two theories for generating signed networks using real data. Adv Methodol Stat 11:31–63. Faculty of Social Sciences, LjubljanaGoogle Scholar
  26. Doreian P, Mrvar A (2015) Structural balance and signed international relations. J Soc Struct 16. Carnegie Mellon University, Pittsburgh, 1–49Google Scholar
  27. Doreian P, Mrvar A (2016) Identifying fragments in networks for structural balance and tracking the levels of balance over time. Connections 35(2):6–18CrossRefGoogle Scholar
  28. Doreian P, Batagelj V, Ferligoj A (2000) Symmetric-acyclic decompositions of networks. J Classif 17(1):3–28MathSciNetCrossRefzbMATHGoogle Scholar
  29. Doreian P, Batagelj V, Ferligoj A (2004) Generalized blockmodeling of two-mode network data. Soc Netw 26(1):29–53CrossRefGoogle Scholar
  30. Doreian P, Lloyd P, Mrvar A (2013) Partitioning large signed two-mode networks: problems and prospects. Soc Netw 35:178–203CrossRefGoogle Scholar
  31. Ferligoj A, Batagelj V (1983) Some types of clustering with relational constraints. Psychometrika 48(4):541–552MathSciNetCrossRefzbMATHGoogle Scholar
  32. Hamberger K (2016) Puck – program for the use and computation of kinship data. http://www.kintip.net
  33. Harary F, Norman RZ, Cartwright D (1965) Structural models: an introduction to the theory of directed graphs. Wiley, New YorkzbMATHGoogle Scholar
  34. Hill RA, Dunbar RIM (2002) Social network size in humans. Hum Nat 14(1):53–72CrossRefGoogle Scholar
  35. Hummon NP, Doreian P (1989) Connectivity in a citation network: the development of DNA theory. Soc Netw 11:39–63CrossRefGoogle Scholar
  36. Kleinberg J (1998) Authoritative sources in a hyperlinked environment. In: Proceedings of 9th ACM-SIAM symposium on discrete algorithms, San Francisco, pp 668–677. http://www.cs.cornell.edu/home/kleinber/auth.ps
  37. Leydesdorff L (2016) Web site: http://www.leydesdorff.net/
  38. Liu JS, Lu LYY (2012) An integrated approach for main path analysis: development of the Hirsch index as an example. J Am Soc Inf Sci Technol 63:528–542CrossRefGoogle Scholar
  39. McCabe T (2003) Computer science approaches: visualization tools and software metrics. In: Survey automation. NAP, Washington, DC, pp 116–136Google Scholar
  40. Mrvar A, Doreian P (2009) Partitioning signed two-mode networks. J Math Sociol 33(3):196–221CrossRefzbMATHGoogle Scholar
  41. Pennock DM et al (2002) Winners don’t take all. PNAS 99(8):5207–5211CrossRefzbMATHGoogle Scholar
  42. Peterson JL (1981) Petri net theory and the modeling of systems. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  43. Rotta R, Noack A (2011) Multilevel local search algorithms for modularity clustering. J Exp Algorithmics 16:2.3MathSciNetCrossRefzbMATHGoogle Scholar
  44. Schvaneveldt RW, Dearholt DW, Durso FT (1988) Graph theoretic foundations of pathfinder networks. Comput Math Appl 15(4):337–345MathSciNetCrossRefzbMATHGoogle Scholar
  45. Seidman SB (1983) Network structure and minimum degree. Soc Netw 5:269–287MathSciNetCrossRefGoogle Scholar
  46. Tarjan RE (1983) Data structures and network algorithms. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefzbMATHGoogle Scholar
  47. VOSviewer web site: http://www.vosviewer.com/
  48. Waltman L, van Eck NJ, Noyons ECM (2010) A unified approach to mapping and clustering of bibliometric networks. J Informetr 4:629–635CrossRefGoogle Scholar
  49. White D (2016) Web site: http://eclectic.ss.uci.edu/~drwhite/
  50. White DR, Batagelj V, Mrvar A (1999) Analyzing large kinship and marriage networks with graph and Pajek. Soc Sci Comput Rev 17(3):245–274CrossRefGoogle Scholar
  51. Zaveršnik M, Batagelj V (2004) Islands, slides from Sunbelt XXIV, Portorož, 12–16 May 2004. http://vlado.fmf.uni-lj.si/pub/networks/doc/sunbelt/islands.pdf

Recommended Reading

  1. Batagelj V (2009a) Complex networks, visualization of. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York/London, pp 1253–1268CrossRefGoogle Scholar
  2. Batagelj V (2009b) Social network analysis, large-scale. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York/London, pp 8245–8265CrossRefGoogle Scholar
  3. Batagelj V (2011) Large-scale network analysis. In: Scott J, Carrington P (eds) The SAGE handbook of social network analysis. SAGE, Thousand OaksGoogle Scholar
  4. Batagelj V, Mrvar A (2003) Pajek – analysis and visualization of large networks. In: Juenger M, Mutzel P (eds) Graph drawing software. Mathematics and visualization. Springer, Berlin, pp 77–103Google Scholar
  5. Batagelj V, Doreian P, Ferligoj A, Kejžar N (2014) Understanding large temporal networks and spatial networks: exploration, pattern searching, visualization and network evolution. Wiley, Hoboken, New JerseyGoogle Scholar
  6. De Nooy W, Mrvar A, Batagelj V (2011) Exploratory social network analysis with Pajek, revised and expanded 2nd edn. Structural analysis in the social sciences. Cambridge University Press, New York, Sept 2011. Translation in Japanese 2008, Denkyo Press, Tokyo. Translation in Chinese 2012, Beijing World Publishing CorporationGoogle Scholar
  7. Doreian P, Batagelj V, Ferligoj A (2004) Generalized blockmodeling. Structural analysis in the social sciences. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  8. Mrvar A, Batagelj V (2016) Analysis and visualization of large networks with program package Pajek. Complex Adapt Syst Model 4:6. SpringerOpenCrossRefzbMATHGoogle Scholar
  9. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Physics, Department of MathematicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Social SciencesUniversity of LjubljanaLjubljanaSlovenia

Section editors and affiliations

  • Vladimir Batagelj
    • 1
    • 2
  1. 1.Department of Theoretical Computer ScienceInstitute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  2. 2.University of Primorska, Andrej Marušič InstituteKoperSlovenia