Skip to main content

Clustering Algorithms

  • Living reference work entry
  • First Online:
Encyclopedia of Social Network Analysis and Mining

Synonyms

Cluster analysis; Community detection

Glossary

Adjacency Matrix:

Matrix representation of a network. Given a network with N nodes, its adjacency matrix is a matrix N × N where its elements a ij represent the existence and possibly the weight of the edge from a node i to a node j

Cluster:

Groups of data items sharing similar features

Community:

Subset of nodes of a graph, highly mutually interconnected

Complex Network:

A network with nontrivial topological features

Degree:

Given a node i of a graph G, its degree is the number of edges incident to it. If G is directed, the number of edges that leave i is its outdegree, whereas the number of edges that end on it is its indegree

Edge:

Representation of a link or connection between two nodes

Geodesic:

Extension of the concept of shortest path between two points in a curved space

Graph:

Abstract representation of a set of items, where some pairs of items are connected by links. These items are called vertices (or nodes) and their...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armano G, Javarone MA (2013) Clustering datasets by complex networks analysis. Complex Adapt Syst Model 1:5. doi:10.1186/2194-3206-1-5

    Article  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer, Norwell

    Book  MATH  Google Scholar 

  • Blondel V, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large network. J Stat Mech Theory Exp 2008:P10008

    Article  Google Scholar 

  • Boyd D, Crawford K (2011) Six provocations for big data. Social Science Research Network working paper series. http://ssrn.com/abstract=1926431

  • D’Andrade R (1978) U-statistic hierarchical clustering. Psychometrika 4:58–67

    MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57. doi:10.1080/01969727308-546046

    Article  MathSciNet  MATH  Google Scholar 

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining. AAAI Press, Portland, pp 226–231

    Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. doi:10.1016/j.physrep.2009. 11.002. http://www.sciencedirect.com/science/article/B6TVP-4XPYXF1-1/2/99061fac6435db4343b2374d2%206e64ac1

    Article  MathSciNet  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann, San Francisco/London

    MATH  Google Scholar 

  • Hartigan JA (1975) Clustering algorithms. Probability & mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  • Hastie TJ, Tibshirani RJ, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, Springer series in statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666

    Article  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323. doi:10.1145/331499.331504

    Article  Google Scholar 

  • Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput 22(11):1025–1034. doi:10.1109/T-C.1973.223640

    Article  Google Scholar 

  • Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 2:241–254

    Article  Google Scholar 

  • Kaufman L, Rousseeuw P (1987) Clustering by means of medoids. Stat Data Anal Based L1 Norm Relat Methods 1:405–416

    Google Scholar 

  • Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(2):291–308

    Article  MATH  Google Scholar 

  • Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies 1. Hierarchical systems. Comput J 9(4):373–380

    Article  Google Scholar 

  • Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137. doi:10.1109/TIT.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  • Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. doi:10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  • Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Dietterich T, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14. MIT Press, Cambridge, MA, pp 849–856

    Google Scholar 

  • Salvador S, Chan P (2004) Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: Proceedings of the 16th IEEE international conference on tools with artificial intelligence, ICTAI’04, Boca Raton. IEEE Computer Society, Washington, DC, pp 576–584. doi:10.1109/ICTAI.2004.50., http://dx.doi.org/10.1109/ICTAI.2004.50

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans on Pattn Anal and Mach Intell 22(8):888–905

    Article  Google Scholar 

  • Tan PN, Steinbach M, Kumar V (2005) Introduction to data mining, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  • Tyler JR, Wilkinson DM, Huberman BA (2003) Email as spectroscopy: automated discovery of community structure within organizations. In: Communities and technologies. Springer Netherlands, Deventer, pp 81–96

    Chapter  Google Scholar 

  • Zahn CT (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput 20(1):68–86. doi:10.1109/T-C.1971.223083

    Article  MATH  Google Scholar 

Download references

Acknowledgments

M.A. Javarone would like to thank Fondazione Banco di Sardegna for supporting his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Eynard .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Eynard, D., Javarone, M.A., Matteucci, M. (2016). Clustering Algorithms. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7163-9_138-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7163-9_138-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7163-9

  • Online ISBN: 978-1-4614-7163-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics