Skip to main content

Microbiome and Melanoma

  • Reference work entry
  • First Online:
Melanoma

Abstract

Significant advances have been made in the past decade across the melanoma care continuum, with approved systemic therapy for patients with advanced disease as well as in the adjuvant setting. We are gaining an appreciation of the factors that drive response and resistance to these therapies, and there is novel evidence that the microbiome (which refers to the microbes that inhabit our bodies along with their collective genomes) may shape overall immunity and may even impact therapeutic responses (e.g., immune checkpoint blockade). This has profound implications and calls to question if the microbiome could be used as a biomarker or therapeutic target in patients going onto treatment with immune checkpoint blockade (and potentially onto other forms of therapy). Insights are also being gained into the potential influence of the microbiota on melanoma development at the level of the skin and of the gut, though there is a tremendous knowledge yet to be gained. Each of these aspects will be discussed herein, as will strategies to target and factors that influence the microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST et al (2017) Editorial: phage therapy: past, present and future. Front Microbiol 8:981

    Article  PubMed  PubMed Central  Google Scholar 

  • Alekseyenko AV et al (2013) Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker BS, Powles A, Fry L (2006) Peptidoglycan: a major aetiological factor for psoriasis? Trends Immunol 27(12):545–551

    Article  CAS  PubMed  Google Scholar 

  • Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346(6212):954–959

    Article  CAS  PubMed  Google Scholar 

  • Bhatt AP, Redinbo MR, Bultman SJ (2017) The role of the microbiome in cancer development and therapy. CA Cancer J Clin 67(4):326–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Boursi B et al (2015) Recurrent antibiotic exposure may promote cancer formation – another step in understanding the role of the human microbiota? Eur J Cancer 51(17):2655–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyman O et al (2007) The pathogenic role of tissue-resident immune cells in psoriasis. Trends Immunol 28(2):51–57

    Article  PubMed  Google Scholar 

  • Budynek P et al (2010) Bacteriophages and cancer. Arch Microbiol 192(5):315–320

    Article  CAS  PubMed  Google Scholar 

  • Bullman S et al (2017) Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358(6369):1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16(3):143–155

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellarin M et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22(2):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaput N et al (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28(6):1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Chen YE, Fischbach MA, Belkaid Y (2018) Skin microbiota-host interactions. Nature 553(7689):427–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogdill AP et al (2018) The impact of intratumoral and gastrointestinal microbiota on systemic cancer therapy. Trends Immunol 39(11):900–920

    Article  CAS  PubMed  Google Scholar 

  • Conrad C et al (2007) Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med 13(7):836–842

    Article  CAS  PubMed  Google Scholar 

  • Dalmasso G et al (2014) The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5(5):675–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Davison SC et al (2001) Contrasting patterns of streptococcal superantigen-induced T-cell proliferation in guttate vs. chronic plaque psoriasis. Br J Dermatol 145(2):245–251

    Article  CAS  PubMed  Google Scholar 

  • De Benedetto A, Kubo A, Beck LA (2012) Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol 132(3 Pt 2):949–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derosa L et al (2018) Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 29(6):1437–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drago L et al (2016) Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clin Mol Allergy 14:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2007) Cultivable bacterial diversity from the human colon. Lett Appl Microbiol 44(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Eiseman B et al (1958) Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44(5):854–859

    CAS  PubMed  Google Scholar 

  • Fahlen A et al (2012) Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res 304(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Frankel AE et al (2017) Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19(10):848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frosali S et al (2015) How the intricate interaction among toll-like receptors, microbiota, and intestinal immunity can influence gastrointestinal pathology. J Immunol Res 2015:489821

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry L, Baker BS (2007) Triggering psoriasis: the role of infections and medications. Clin Dermatol 25(6):606–615

    Article  PubMed  Google Scholar 

  • Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450

    Article  CAS  PubMed  Google Scholar 

  • Gao Z et al (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104(8):2927–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z et al (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 3(7):e2719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Castillo V et al (2016) Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol 65(12):1347–1362

    Article  CAS  PubMed  Google Scholar 

  • Garrett WS (2015) Cancer and the microbiota. Science 348(6230):80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geller LT et al (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357(6356):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan V et al (2018a) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan V et al (2018b) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53(10):994–1002

    Article  PubMed  Google Scholar 

  • Grice EA (2014) The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg 33(2):98–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z et al (2018) Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68:289–300

    Article  PubMed  CAS  Google Scholar 

  • Hibberd AA et al (2017) Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 4(1):e000145

    Article  PubMed  PubMed Central  Google Scholar 

  • Honda K, Littman DR (2016) The microbiota in adaptive immune homeostasis and disease. Nature 535(7610):75–84

    Article  CAS  PubMed  Google Scholar 

  • Human Microbiome Project Consortium (2012a) A framework for human microbiome research. Nature 486(7402):215–221

    Article  CAS  Google Scholar 

  • Human Microbiome Project Consortium (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  CAS  Google Scholar 

  • Johansson ME et al (2015) Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18(5):582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juul FE et al (2018) Fecal microbiota transplantation for primary Clostridium difficile infection. N Engl J Med 378(26):2535–2536

    Article  PubMed  Google Scholar 

  • Khanna S et al (2016) Gut microbiome predictors of treatment response and recurrence in primary Clostridium difficile infection. Aliment Pharmacol Ther 44(7):715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Zeng MY, Nunez G (2017) The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 49(5):e339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic AD et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Zitvogel L (2018) Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nat Rev Immunol 18(2):87–88

    Article  CAS  PubMed  Google Scholar 

  • Lagier JC et al (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18(12):1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Lagier JC et al (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550

    Article  CAS  PubMed  Google Scholar 

  • Lathrop SK et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478(7368):250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linehan JL et al (2018) Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172(4):784–796.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littman AJ et al (2004) Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol Biomark Prev 13(10):1624–1630

    Google Scholar 

  • Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  • Lusiak-Szelachowska M et al (2017) Bacteriophages in the gastrointestinal tract and their implications. Gut Pathog 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangerich A et al (2012) Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc Natl Acad Sci U S A 109(27):E1820–E1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Matson V et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoy AN et al (2013) Fusobacterium is associated with colorectal adenomas. PLoS One 8(1):e53653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald D et al (2018) American Gut: an open platform for citizen science microbiome research. mSystems 3(3):e00031–18. PMID: 29795809

    Google Scholar 

  • McFadden J, Valdimarsson H, Fry L (1991) Cross-reactivity between streptococcal M surface antigen and human skin. Br J Dermatol 125(5):443–447

    Article  CAS  PubMed  Google Scholar 

  • Miller NJ et al (2018) Merkel cell polyomavirus-specific immune responses in patients with Merkel cell carcinoma receiving anti-PD-1 therapy. J Immunother Cancer 6(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  • Mima K et al (2015) Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 1(5):653–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Mima K et al (2017) The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett 402:9–15

    Article  CAS  PubMed  Google Scholar 

  • Nagy KN et al (1998) The microflora associated with human oral carcinomas. Oral Oncol 34(4):304–308

    Article  CAS  PubMed  Google Scholar 

  • Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361(5):496–509

    Article  CAS  PubMed  Google Scholar 

  • Oude Griep LM, Wang H, Chan Q (2013) Empirically-derived dietary patterns, diet quality scores, and markers of inflammation and endothelial dysfunction. Curr Nutr Rep 2(2):97–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740

    Article  CAS  PubMed  Google Scholar 

  • Paramsothy S et al (2017) Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389(10075):1218–1228

    Article  PubMed  Google Scholar 

  • Peek RM Jr, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Pranjol MZ, Hajitou A (2015) Bacteriophage-derived vectors for targeted cancer gene therapy. Viruses 7(1):268–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purcell RV et al (2017) Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 12(2):e0171602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez-Farias C et al (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101(4):541–550

    Article  CAS  PubMed  Google Scholar 

  • Rao K, Young VB (2015) Fecal microbiota transplantation for the management of Clostridium difficile infection. Infect Dis Clin N Am 29(1):109–122

    Article  Google Scholar 

  • Reichardt N et al (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8(6):1323–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieckmann T et al (2013) HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother Oncol 107(2):242–246

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA et al (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy B et al (2017) The influence of gut-decontamination prophylactic antibiotics on acute graft-versus-host disease and survival following allogeneic hematopoietic stem cell transplantation. Oncoimmunology 6(1):e1258506

    Article  PubMed  CAS  Google Scholar 

  • Routy B et al (2018a) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  PubMed  Google Scholar 

  • Routy B et al (2018b) The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 15(6):382–396

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein MR et al (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford JA, Gallo RL (2013) Functions of the skin microbiota in health and disease. Semin Immunol 25(5):370–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears CL, Garrett WS (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe 15(3):317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekirov I et al (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    Article  CAS  PubMed  Google Scholar 

  • Seng P et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49(4):543–551

    Article  CAS  PubMed  Google Scholar 

  • Sheflin AM, Whitney AK, Weir TL (2014) Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep 16(10):406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smola S (2017) Immunopathogenesis of HPV-associated cancers and prospects for immunotherapy. Viruses 9(9). pii:E254. PMID: 28895886

    Article  PubMed Central  CAS  Google Scholar 

  • Spiljar M, Merkler D, Trajkovski M (2017) The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol 8:1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Strati F et al (2017) New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Suez J et al (2018) Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174(6):1406–1423.e16

    Article  CAS  PubMed  Google Scholar 

  • Tang WH, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro H, Brenner MK (2017) Immunotherapy against cancer-related viruses. Cell Res 27(1):59–73

    Article  CAS  PubMed  Google Scholar 

  • Trivedi B (2012) Microbiome: the surface brigade. Nature 492(7429):S60–S61

    Article  CAS  PubMed  Google Scholar 

  • Tsilimigras MC, Fodor A, Jobin C (2017) Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2:17008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587(Pt 17):4153–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ et al (2007) The human microbiome project. Nature 449(7164):804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe-Herranz M et al (2018) Gut microbiota modulates adoptive cell therapy via CD8alpha dendritic cells and IL-12. JCI Insight 3(4). pii: 94952. PMID: 29467322

    Google Scholar 

  • Valdimarsson H et al (2009) Psoriasis – as an autoimmune disease caused by molecular mimicry. Trends Immunol 30(10):494–501

    Article  CAS  PubMed  Google Scholar 

  • van Nood E, Dijkgraaf MG, Keller JJ (2013) Duodenal infusion of feces for recurrent Clostridium difficile. N Engl J Med 368(22):2145

    Article  PubMed  CAS  Google Scholar 

  • Venter JC et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    Article  CAS  PubMed  Google Scholar 

  • Vetizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade W (2002) Unculturable bacteria – the uncharacterized organisms that cause oral infections. J R Soc Med 95(2):81–83

    PubMed  PubMed Central  Google Scholar 

  • Warren RL et al (2013) Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Welton JC, Marr JS, Friedman SM (1979) Association between hepatobiliary cancer and typhoid carrier state. Lancet 1(8120):791–794

    Article  CAS  PubMed  Google Scholar 

  • Wong WF, Santiago M (2017) Microbial approaches for targeting antibiotic-resistant bacteria. Microb Biotechnol 10(5):1047–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15(9):1016–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Jobin C (2017) Novel insights into microbiome in colitis and colorectal cancer. Curr Opin Gastroenterol 33(6):422–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi M et al (2018) Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol 11(1):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimoto S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101

    Article  CAS  PubMed  Google Scholar 

  • Yu J et al (2016) Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 139(6):1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2018) Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake. Sci Total Environ 618:1254–1267

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L et al (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zitvogel L et al (2017) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15(8):465–478

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L et al (2018) The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359(6382):1366–1370

    Article  CAS  PubMed  Google Scholar 

  • Zmora N et al (2018) Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174(6):1388–1405.e21

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Fang L, Lee MH (2018) Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep (Oxf) 6(1):1–12

    Article  Google Scholar 

  • Zuo T et al (2018) Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun 9(1):3663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author Contributions

Conception: Hermann and Wargo

Writing: Arora and Wargo

Creation of figures: Arora and Wargo

Critical review and revision of the manuscript: All authors

Conflict of Interest Disclosures

J. Wargo is an inventor on a US patent application (PCT/US17/53.717) submitted by the University of Texas MD Anderson Cancer Center that covers methods to enhance immune checkpoint blockade responses by modulating the microbiome. J. Wargo is a paid speaker for Imedex, Dava Oncology, Omniprex, Illumina, Gilead, MedImmune, and Bristol-Myers Squibb. She is a consultant/advisory board member for Roche-Genentech, Novartis, AstraZeneca, GlaxoSmithKline, Bristol-Myers Squibb, Merck, and MicrobiomeDx. J. Wargo also receives clinical trial support from GlaxoSmithKline, Roche-Genentech, Bristol-Myers Squibb, and Novartis. J. Wargo is a clinical and scientific advisor at MicrobiomeDx and a consultant at Biothera Pharma and Merck Sharp and Dohme.

The other authors declared no conflicts of interest.

Funding/Support

J. Wargo has honoraria from speakers’ bureau of Dava Oncology, Bristol-Myers Squibb, and Illumina and is an advisory board member for GlaxoSmithKline, Novartis, and Roche-Genentech. J. Wargo is supported by the NIH (1 R01 CA219896-01A1), US-Israel Binational Science Foundation (201332), Kennedy Memorial Foundation (0727030), the Melanoma Research Alliance (4022024), American Association for Cancer Research Stand Up To Cancer (SU2C-AACR-IRG-19-17), Department of Defense (W81XWH-16-1-0121), MD Anderson Cancer Center Multidisciplinary Research Program Grant, Andrew Sabin Family Fellows Program, and MD Anderson Cancer Center’s Melanoma Moon Shots Program. J. Wargo is a member of the Parker Institute for Cancer Immunotherapy at MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Wargo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Arora, R., Hermann, A., Wargo, J.A. (2019). Microbiome and Melanoma. In: Fisher, D., Bastian, B. (eds) Melanoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7147-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7147-9_41

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7148-6

  • Online ISBN: 978-1-4614-7147-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics