Skip to main content

Acoustic Timbre Recognition

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Auditory recognition; Sound source identification

Definition

Timbre is what allows a listener to distinguish two sounds that have otherwise the same subjective pitch, loudness, location, and duration. For instance, when orchestral musicians tune at the beginning of a concert, they all play the same note, but one can still tell the difference between instruments. This is largely because of timbre.

Detailed Description

The standard definition of timbre has several shortcomings. First, it says what timbre is not, rather than what it is. Second, it relates to the comparison between two sound tokens, whereas a more useful function for hearing is to associate a single timbre directly with a sound source (the timbre of the piano, the timbre of the voice of a friend). Perhaps as a consequence, there is still a lively debate about the acoustic features, mental representations, and neural mechanisms underlying timbre recognition. Here, we first outline the basic principles that make...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agus TR, Suied C, Thorpe SJ, Pressnitzer D (2012) Fast recognition of musical sounds based on timbre. J Acoust Soc Am 131:4124–4133

    PubMed  Google Scholar 

  • Belin P (2006) Voice processing in human and non-human primates. Philos Trans R Soc Lond SerB Biol Sci 361:2091–2107

    Google Scholar 

  • Bizley JK, Walker KM, Silverman BW, King AJ, Schnupp JW (2009) Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. J Neurosci Off J Soc Neurosci 29:2064–2075

    CAS  Google Scholar 

  • Caclin A, Brattico E, Tervaniemi M, Naatanen R, Morlet D, Giard MH, McAdams S (2006) Separate neural processing of timbre dimensions in auditory sensory memory. J Cognit Neurosci 18:1959–1972

    Google Scholar 

  • Coath M, Denham SL (2005) Robust sound classification through the representation of similarity using response fields derived from stimuli during early experience. Biol Cybern 93:22–30

    PubMed  Google Scholar 

  • Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. J Neurophysiol 85:1220–1234

    CAS  PubMed  Google Scholar 

  • Elliott TM, Hamilton LS, Theunissen FE (2013) Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. J Acoust Soc Am 133:389–404

    PubMed Central  PubMed  Google Scholar 

  • Formisano E, De Martino F, Bonte M, Goebel R (2008) “Who” is saying “what”? Brain-based decoding of human voice and speech. Science 322:970–973

    CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neurosci 6:1216–1223

    CAS  PubMed  Google Scholar 

  • Grey JM (1977) Multidimensional perceptual scaling of musical timbres. J Acoust Soc Am 61:1270–1277

    CAS  PubMed  Google Scholar 

  • Helmholtz H (1877) On the sensations of tone. Dover, New York

    Google Scholar 

  • Hermansky H (1990) Perceptual linear predictive (PLP) analysis of speech. J Acoust Soc Am 87:1738–1752

    CAS  PubMed  Google Scholar 

  • Hromadka T, Zador AM (2009) Representations in auditory cortex. Curr Opin Neurobiol 19:430–433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. J Neurosci Off J Soc Neurosci 24:1089–1100

    CAS  Google Scholar 

  • McAdams S, Winsberg S, Donnadieu S, De Soete G, Krimphoff J (1995) Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychol Res 58:177–192

    CAS  PubMed  Google Scholar 

  • Pachet F, Roy P (2009) Analytical features: a knowledge-based approach to audio feature generation. EURASIP J Audio Speech Music Process 2009

    Google Scholar 

  • Patil K, Pressnitzer D, Shamma S, Elhilali M (2012) Music in our ears: the biological bases of musical timbre perception. PLoS Comput Biol 8:e1002759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peeters G, Giordano BL, Susini P, Misdariis N, McAdams S (2011) The timbre toolbox: extracting audio descriptors from musical signals. J Acoust Soc Am 130:2902–2916

    PubMed  Google Scholar 

  • Staeren N, Renvall H, De Martino F, Goebel R, Formisano E (2009) Sound categories are represented as distributed patterns in the human auditory cortex. Curr Biol 19:498–502

    CAS  PubMed  Google Scholar 

  • Suied C, Agus TR, Thorpe S, Pressnitzer D (2013) Processing of short auditory stimuli: the rapid audio sequential presentation paradigm (RASP). In: Moore BCJ, Patterson RD, Winter IM, Carlyon RP, Gockel HE (eds) Basic aspects of hearing: physiology and perception. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pressnitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Pressnitzer, D., Agus, T., Suied, C. (2015). Acoustic Timbre Recognition. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_98

Download citation

Publish with us

Policies and ethics