Skip to main content

Dopaminergic Cell Models

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

  • Dopaminergic (DA) neurons are defined as neurons synthesizing and containing the neurotransmitter and neurohormone dopamine. Such neurons release dopamine synaptically as well as dendritically (Bustos et al. 2004).

  • The electrophysiological signatures of this neuron are broad action potentials (Fig. 1) and a low-frequency, regular spontaneous activity (Fig. 2a).

  • A distinctive property of the DA neuron is that it differentially responds to different types of excitatory synaptic inputs (Fig. 2a and b).

  • Models have explained these properties and connected them with one another and with particular current compositions (Figs. 3 and 4).

    Dopaminergic Cell Models, Fig. 1
    figure 537 figure 537

    A single spike of a DA neuron

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amini B, Clark JW, Canavier CC (1999) Calcium dynamics underlying pacemaker-like burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249–2261

    CAS  PubMed  Google Scholar 

  • Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E (2004) Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Rev 47(1–3):126–144

    CAS  PubMed  Google Scholar 

  • Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49–69

    CAS  PubMed  Google Scholar 

  • Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549–2563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Canavier CC, Oprisan S, Callaway J, Ji H, Shepard PD (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 98(5):3006–3022

    PubMed  Google Scholar 

  • Deister CA, Teagarden MA, Wilson CJ, Paladini CA (2009) An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. J Neurosci 50:15888–15897

    Google Scholar 

  • Drion G, Massotte L, Sepulchre R, Seutin V (2011) How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 7(5):e1002050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36(20):1983–1994

    CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    CAS  PubMed  Google Scholar 

  • Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:355–362

    CAS  PubMed  Google Scholar 

  • Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. J Neurosci 114(2):475–492

    CAS  Google Scholar 

  • Ji H, Shepard PD (2006) SK Ca2 + -activated K + channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience 140(2):623–633

    CAS  PubMed  Google Scholar 

  • Johnson SW, Wu Y-N (2004) Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Res 1019:293–296

    CAS  PubMed  Google Scholar 

  • Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-d-aspartate: role of electrogenic sodium pump. Science 258:655–657

    Google Scholar 

  • Komendantov AO, Canavier CC (2002) Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony. J Neurophysiol 87:1526–1541

    CAS  PubMed  Google Scholar 

  • Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346–357

    CAS  PubMed  Google Scholar 

  • Kuznetsov AS, Kopell NJ, Wilson CJ (2006) Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol 95:932–947

    CAS  PubMed  Google Scholar 

  • Li Y-X, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397–410

    CAS  PubMed  Google Scholar 

  • Medvedev GS, Kopell N (2001) Synchronization and transient dynamics in chains of electrically coupled FitzHugh-Nagumo oscillations. SIAM J Appl Math 61:1763–1801

    Google Scholar 

  • Medvedev GS, Wilson CJ, Callaway JC, Kopell N (2003) Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron. J Comput Neurosci 15:53–69

    CAS  PubMed  Google Scholar 

  • Meltzer LT, Christoffersen CL, Serpa KA (1997) Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neurosci Biobehav Rev 21(4):511–518

    CAS  PubMed  Google Scholar 

  • Morikawa H, Khodakhah K, Williams JT (2003) Two intracellular pathways medicate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci 23:149–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neuhoff H, Neu A, Liss B, Roeper J (2002) Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22(4):1290–1302

    CAS  PubMed  Google Scholar 

  • Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Rev 25:312–334

    CAS  PubMed  Google Scholar 

  • Ping HX, Shepard PD (1996) Apamin-sensitive Ca2 + -activated K + channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport 7:809–814

    CAS  PubMed  Google Scholar 

  • Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 49:15414–15419

    Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7(12):967–975

    CAS  PubMed  Google Scholar 

  • Richards CD, Shiroyama T, Kitai ST (1997) Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. J Neurosci 80(2):545–557

    CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    CAS  PubMed  Google Scholar 

  • Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2 + -activated K + conductance. Exp Brain Res 86:141–150

    CAS  PubMed  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15:3092–3103

    CAS  PubMed  Google Scholar 

  • Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J, Seutin V (2005) SK channels control the firing pattern of midbrain dopaminergic neurons. Eur J Neurosci 22(12):3111–3121

    PubMed  Google Scholar 

  • Wilson CJ, Callaway JC (2000) A coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100

    CAS  PubMed  Google Scholar 

  • Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21(10):3443–3456

    CAS  PubMed  Google Scholar 

Further Reading

  • Kotter R, Feizelmeier M (1998) Species-dependence and relationship of morphological and electrophysiological properties in nigral compacta neurons. Prog Neurobiol 54:619–632

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kuznetsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Kuznetsov, A., Gutkin, B. (2015). Dopaminergic Cell Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_86

Download citation

Publish with us

Policies and ethics