Skip to main content

Adaptation in Sensory Cortices, Models of

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Models of pattern adaptation; Models of sensory adaptation

Definition

Models of adaptation in sensory cortices provide a functional and/or mechanistic description of the changes in neural responses and perception caused by sensory stimuli observed in the recent past. Sensory systems compute dynamic representations of the environment: cortical neurons typically adapt their “code” according to the recently received sensory input. This continuous recalibration is reflected in changes in neuronal response properties and has been interpreted as an adjustment of the limited dynamical range to compensate changes in the environment or changes in the observer. Functional models of sensory adaptation have linked these findings to optimal coding. Moreover, adaptation has also been studied in biophysical and network models, with the goal of understanding the mechanisms that give rise to adaptation in biological cortical circuits.

Detailed Description

Sensory adaptation refers to the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    CAS  PubMed  Google Scholar 

  • Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith WA (ed) Sensor communication. MIT Press, Cambridge, MA, pp 217–234

    Google Scholar 

  • Bednar JA, Miikkulainen R (2000) Tilt aftereffects in a self-organizing model of the primary visual cortex. Neural Comput 12:1721–1740

    CAS  PubMed  Google Scholar 

  • Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15:2523–2564. doi:10.1162/089976603322385063

    PubMed  Google Scholar 

  • Chelaru MI, Dragoi V (2008) Asymmetric synaptic depression in cortical networks. Cereb Cortex 18:771–788. doi:10.1093/cercor/bhm119

    PubMed  Google Scholar 

  • Clifford CW, Wenderoth P, Spehar B (2000) A functional angle on some after-effects in cortical vision. Proc Biol Sci 267:1705–1710. doi:10.1098/rspb.2000.1198

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clifford CW, Webster MA, Stanley GB et al (2007) Visual adaptation: neural, psychological and computational aspects. Vis Res 47:3125–3131. doi:10.1016/j.visres.2007.08.023

    PubMed  Google Scholar 

  • Compte A, Wang X-J (2006) Tuning curve shift by attention modulation in cortical neurons: a computational study of its mechanisms. Cereb Cortex 16:761–778. doi:10.1093/cercor/bhj021

    PubMed  Google Scholar 

  • Cortes JM, Marinazzo D, Series P et al (2011) The effect of neural adaptation on population coding accuracy. J Comput Neurosci. doi:10.1007/s10827-011-0358-4

    PubMed Central  PubMed  Google Scholar 

  • Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689. doi:10.1038/nn1541

    CAS  PubMed  Google Scholar 

  • Doya K, Ishii S, Pouget A, Rao RPN (2007) Bayesian brain: probabilistic approaches to neural coding. MIT Press, Cambridge, MA

    Google Scholar 

  • Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298

    CAS  PubMed  Google Scholar 

  • Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412:787–792. doi:10.1038/35090500

    CAS  PubMed  Google Scholar 

  • Jin DZ, Dragoi V, Sur M, Seung HS (2005) Tilt aftereffect and adaptation-induced changes in orientation tuning in visual cortex. J Neurophysiol 94:4038–4050. doi:10.1152/jn.00571.2004

    PubMed  Google Scholar 

  • King AJ, Dahmen JC, Keating P et al (2011) Neural circuits underlying adaptation and learning in the perception of auditory space. Neurosci Biobehav Rev 35:2129–2139. doi:10.1016/j.neubiorev.2011.03.008

    PubMed Central  PubMed  Google Scholar 

  • Kohn A (2007) Visual adaptation: physiology, mechanisms, and functional benefits. J Neurophysiol 97:3155–3164. doi:10.1152/jn.00086.2007

    PubMed  Google Scholar 

  • Kvale MN, Schreiner CE (2004) Short-term adaptation of auditory receptive fields to dynamic stimuli. J Neurophysiol 91:604–612. doi:10.1152/jn.00484.2003

    PubMed  Google Scholar 

  • Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch C 36:910–912

    CAS  PubMed  Google Scholar 

  • Maravall M, Petersen RS, Fairhall AL et al (2007) Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol 5:e19. doi:10.1371/journal.pbio.0050019

    PubMed Central  PubMed  Google Scholar 

  • Nagel KI, Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51:845–859. doi:10.1016/j.neuron.2006.08.030

    CAS  PubMed  Google Scholar 

  • Petersen RS, Panzeri S, Maravall M (2009) Neural coding and contextual influences in the whisker system. Biol Cybern 100:427–446. doi:10.1007/s00422-008-0290-5

    PubMed  Google Scholar 

  • Rolfs M, Dambacher M, Cavanagh P (2013) Visual adaptation of the perception of causality. Curr Biol CB 23:250–254. doi:10.1016/j.cub.2012.12.017

    CAS  Google Scholar 

  • Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20:4267–4285

    CAS  PubMed  Google Scholar 

  • Seriès P, Stocker AA, Simoncelli EP (2009) Is the homunculus “aware” of sensory adaptation? Neural Comput 21:3271–3304. doi:10.1162/neco.2009.09-08-869

    PubMed Central  PubMed  Google Scholar 

  • Stimberg M, Wimmer K, Martin R et al (2009) The operating regime of local computations in primary visual cortex. Cereb Cortex 19:2166–2180. doi:10.1093/cercor/bhn240

    PubMed Central  PubMed  Google Scholar 

  • Stocker A, Simoncelli E (2006) Sensory adaptation within a Bayesian framework for perception. In: Weiss Y, Schölkopf B, Platt J (eds) Advances neural information process system, vol 18. MIT Press, Cambridge, MA, pp 1289–1296

    Google Scholar 

  • Teich AF, Qian N (2003) Learning and adaptation in a recurrent model of V1 orientation selectivity. J Neurophysiol 89:2086–2100. doi:10.1152/jn.00970.2002

    PubMed  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94:719–723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17:423–429. doi:10.1016/j.conb.2007.07.001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Webster MA (2011) Adaptation and visual coding. J Vis 11:1–23. doi:10.1167/11.5.3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Wimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Wimmer, K. (2015). Adaptation in Sensory Cortices, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_565

Download citation

Publish with us

Policies and ethics