Skip to main content

Resistivity/Conductivity of Extracellular Medium

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 150 Accesses

Synonyms

Tissue conductivity; Tissue impedance; Tissue resistivity

Definition

The electrical properties of neural tissue describe how an applied electric field (e.g., biopotentials or electrical stimulation) propagates through the tissue. The complex nature of neural tissue leads to frequency-dependent, inhomogeneous, and anisotropic electrical properties within the tissue.

Detailed Description

Introduction

Electrical properties of neural tissue can be described in terms of electrical impedance. Electrical impedance describes the opposition to the flow of an electrical current through the tissue. Electrical impedance can be a complex quantity with both real (i.e., resistive) and imaginary (i.e., reactive) components. While several studies only consider the resistive component of neural tissue, neural tissue often displays frequency-dependent electrical properties in which it is often useful to consider both the resistive and the reactive components (Fig. 1). The electrical properties...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bedard C, Destexhe A (2012) Local field potentials. In: Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge, pp 136–191

    Google Scholar 

  • Bosetti CA, Birdno MJ, Grill WM (2008) Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. J Neural Eng 5:44–53

    Google Scholar 

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    CAS  PubMed  Google Scholar 

  • Chaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC (2010) Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul 3:65–77

    PubMed Central  PubMed  Google Scholar 

  • Foster KR, Schwan HP (1996) Dielectric properties of tissues. In: Polk C, Postow E (eds) Biological effects of electromagnetic fields, 2nd edn. CRC Press, Boca Raton, pp 25–102

    Google Scholar 

  • Gabriel C, Gabriel S, Corthout E (1996a) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249

    CAS  PubMed  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    CAS  PubMed  Google Scholar 

  • Geddes LA, Baker LE (1967) The specific resistance of biological material – a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293

    CAS  PubMed  Google Scholar 

  • Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72:847–858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lempka SF, McIntyre CC (2013) Theoretical analysis of the local field potential in deep brain stimulation applications. PLoS One 8:e59839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC (2011) Theoretical analysis of intracortical microelectrode recordings. J Neural Eng 8:045006

    PubMed Central  PubMed  Google Scholar 

  • Linden H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423–444

    PubMed  Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

    CAS  PubMed  Google Scholar 

  • McAdams ET, Jossinet J (1995) Tissue impedance: a historical overview. Physiol Meas 16:A1–A13

    CAS  PubMed  Google Scholar 

  • McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115:589–595

    PubMed  Google Scholar 

  • Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629

    PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Moffitt MA, McIntyre CC (2005) Model-based analysis of cortical recording with silicon microelectrodes. Clin Neurophysiol 116:2240–50

    PubMed  Google Scholar 

  • Nunez P, Srinivasan R (2006) Electric fields of the brain. Oxford University Press, Oxford

    Google Scholar 

  • Plonsey R, Heppner DB (1967) Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29:657–664

    CAS  PubMed  Google Scholar 

  • Ranck JB (1963) Specific impedance of rabbit cerebral cortex. Exp Neurol 7:144–152

    PubMed  Google Scholar 

  • Ranck JB, BeMent SL (1965) The specific impedance of the dorsal columns of cat: an anisotropic medium. Exp Neurol 11:451–463

    PubMed  Google Scholar 

  • Sperelakis N (2012) Origin of resting membrane potentials. In: Sperelakis N (ed) Cell physiology sourcebook: essentials of membrane biophysics, 4th edn. Elsevier, New York, pp 121–145

    Google Scholar 

  • Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (2001) Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci U S A 98:11697–11701

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Lempka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lempka, S., McIntyre, C. (2015). Resistivity/Conductivity of Extracellular Medium. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_549

Download citation

Publish with us

Policies and ethics