Skip to main content

Current Source Density (CSD) Analysis

  • Reference work entry
  • First Online:

Synonyms

CSD; CSD method; Reconstruction of current sources

Definition

Current source density analysis (CSD) is a class of methods of analysis of extracellular electric potentials recorded at multiple sites leading to estimates of current sources generating the measured potentials. It is usually applied to low-frequency part of the potential (called the local field potential, LFP) and to simultaneous recordings or to recordings taken with fixed time reference to the onset of specific stimulus (evoked potentials, EP).

Detailed Description

Among the different mechanisms contributing to extracellular electric potential in the tissue (Buzsáki et al. 2012; Einevoll et al. 2012), transmembrane currents in neurons are believed to dominate. These are ionic currents passing through all the different membrane channels (passive, voltage dependent, calcium dependent, synaptic, etc.) as well as the capacitive currents which, while charging the membrane, also contribute to the motion of ions in the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404

    Google Scholar 

  • Bedard C, Destexhe A (2011) A generalized theory for current-source density analysis in brain tissue. Phys Rev E 84:041909

    Google Scholar 

  • Berdondini L, van der Wal PD, Guenat O, de Rooij NF, Koudelka-Hep M, Seitz P, Kaufmann R, Metzler P, Blanc N, Rohr S (2005) High-density electrode array for imaging in vitro electrophysiological activity. Biosens Bioelectron 21(1):167–174

    CAS  PubMed  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    PubMed  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420

    PubMed  Google Scholar 

  • Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Barthó P, Wise KD, Buzsáki G (2003) Massively parallel recording of unit and local field potentials with silicon-based electrodes. J Neurophysiol 90(2):1314–1323

    PubMed  Google Scholar 

  • Egert U, Schlosshauer B, Fennrich S, Nisch W, Fejtl M, Knott T, Müller T, Hämmerle H (1998) A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res Brain Res Protoc 2(4):229–242

    CAS  PubMed  Google Scholar 

  • Einevoll GT, Lindén H, Tetzlaff T, Łęski S, Pettersen KH (2012) Local field potentials. Biophysical origin and analysis. In: Quiroga RQ and Panzer S (Ed.) Principles of neural coding. CRC Press, Boca Raton pp 37–61

    Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770–785

    CAS  PubMed  Google Scholar 

  • Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24(7):2191–2198

    CAS  PubMed  Google Scholar 

  • Goto T, Hatanaka R, Ogawa T, Sumiyoshi A, Riera J, Kawashima R (2010) An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. J Neurophysiol 104(6):3388–3412

    PubMed  Google Scholar 

  • Gratiy SL, Devor A, Einevoll GT, Dale AM (2011) On the estimation of population-specific synaptic currents from laminar multielectrode recordings. Front Neuroinform 5:32

    PubMed Central  PubMed  Google Scholar 

  • Haberly LB, Shepherd GM (1973) Current-density analysis of summed evoked potentials in opossum prepyriform cortex. J Neurophysiol 36(4):789–802

    CAS  PubMed  Google Scholar 

  • Hunt MJ, Falinska M, Łeski S, Wójcik DK, Kasicki S (2011) Differential effects produced by ketamine on oscillatory activity recorded in the rat hippocampus, dorsal striatum and nucleus accumbens. J Psychopharmacol 25(6):808–821

    CAS  PubMed  Google Scholar 

  • Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72(5):847–858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838

    PubMed Central  CAS  PubMed  Google Scholar 

  • Łęski S, Wójcik DK, Tereszczuk J, Świejkowski DA, Kublik E, Wróbel A (2007) Inverse current-source density method in 3D: reconstruction fidelity, boundary effects, and influence of distant sources. Neuroinformatics 5(4):207–222

    PubMed  Google Scholar 

  • Łęski S, Kublik E, Swiejkowski DA, Wróbel A, Wójcik DK (2010) Extracting functional components of neural dynamics with independent component analysis and inverse current source density. J Comput Neurosci 29(3):459–473

    PubMed  Google Scholar 

  • Łęski S, Pettersen KH, Tunstall B, Einevoll GT, Gigg J, Wójcik DK (2011) Inverse current source density method in two dimensions: inferring neural activation from multielectrode recordings. Neuroinformatics 9(4):401–425

    PubMed Central  PubMed  Google Scholar 

  • Łęski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9(7):e1003137

    PubMed Central  PubMed  Google Scholar 

  • Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72(5):859–872

    PubMed  Google Scholar 

  • Makarov VA, Makarova J, Herreras O (2010) Disentanglement of local field potential sources by independent component analysis. J Comput Neurosci 29(3):445–457

    PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37–100

    CAS  PubMed  Google Scholar 

  • Nicholson C (1973) Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. IEEE Transactions on Biomedical Engineering 20(4):278–288

    Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38(2):356–368

    CAS  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2005) Electric fields of the brain: the neurophysics of EEG. MIT Press, Cambridge, MA

    Google Scholar 

  • Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT (2006) Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J Neurosci Methods 154(1–2):116–133

    PubMed  Google Scholar 

  • Pitts WH (1952) Investigations on synaptic transmission. In: von Foerster H (Ed.) Cybernetics, Transactions of the 9th conference, Josiah Macy Foundation, New York pp 159–166

    Google Scholar 

  • Potworowski J, Glabska H, Leski S, Wojcik D (2011) Extracting activity of individual cell populations from multielectrode recordings. BMC Neurosci 12(Suppl 1):374

    Google Scholar 

  • Potworowski J, Jakuczun W, Łęski S, Wójcik D (2012) Kernel current source density method. Neural Comput 24(2):541–575

    PubMed  Google Scholar 

  • Rappelsberger P, Pockberger H, Petsche H (1981) Current source density analysis: methods and application to simultaneously recorded field potentials of the rabbit’s visual cortex. Pflugers Arch 389(2):159–170

    CAS  PubMed  Google Scholar 

  • Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79(2):375–390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schoelkopf B, Smola A (2002) Learning with Kernels. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Somogyvári Z, Zalányi L, Ulbert I, Erdi P (2005) Model-based source localization of extracellular action potentials. J Neurosci Methods 147(2):126–137

    PubMed  Google Scholar 

  • Somogyvári Z, Cserpán D, Ulbert I, Erdi P (2012) Localization of single-cell current sources based on extracellular potential patterns: the spike CSD method. Eur J Neurosci 36(10):3299–3313

    PubMed  Google Scholar 

  • Stevens CF (1966) Neurophysiology: a primer. Wiley, New York

    Google Scholar 

  • Tranquillo J (2008) Quantitative neurophysiology. Morgan and Claypool Publishers, San Rafael

    Google Scholar 

  • Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93(4):2194–2232

    PubMed  Google Scholar 

  • Vaknin G, DiScenna PG, Teyler TJ (1988) A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume. J Neurosci Methods 24(2):131–135

    CAS  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. Wójcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Wójcik, D.K. (2015). Current Source Density (CSD) Analysis. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_544

Download citation

Publish with us

Policies and ethics