Encyclopedia of Computational Neuroscience

2015 Edition
| Editors: Dieter Jaeger, Ranu Jung

Current Source Density (CSD) Analysis

  • Daniel K. WójcikEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6675-8_544

Synonyms

Definition

Current source density analysis (CSD) is a class of methods of analysis of extracellular electric potentials recorded at multiple sites leading to estimates of current sources generating the measured potentials. It is usually applied to low-frequency part of the potential (called the local field potential, LFP) and to simultaneous recordings or to recordings taken with fixed time reference to the onset of specific stimulus (evoked potentials, EP).

Detailed Description

Among the different mechanisms contributing to extracellular electric potential in the tissue (Buzsáki et al. 2012; Einevoll et al. 2012), transmembrane currents in neurons are believed to dominate. These are ionic currents passing through all the different membrane channels (passive, voltage dependent, calcium dependent, synaptic, etc.) as well as the capacitive currents which, while charging the membrane, also contribute to the motion of ions in...
This is a preview of subscription content, log in to check access.

References

  1. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404Google Scholar
  2. Bedard C, Destexhe A (2011) A generalized theory for current-source density analysis in brain tissue. Phys Rev E 84:041909Google Scholar
  3. Berdondini L, van der Wal PD, Guenat O, de Rooij NF, Koudelka-Hep M, Seitz P, Kaufmann R, Metzler P, Blanc N, Rohr S (2005) High-density electrode array for imaging in vitro electrophysiological activity. Biosens Bioelectron 21(1):167–174PubMedGoogle Scholar
  4. Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451PubMedGoogle Scholar
  5. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420PubMedGoogle Scholar
  6. Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Barthó P, Wise KD, Buzsáki G (2003) Massively parallel recording of unit and local field potentials with silicon-based electrodes. J Neurophysiol 90(2):1314–1323PubMedGoogle Scholar
  7. Egert U, Schlosshauer B, Fennrich S, Nisch W, Fejtl M, Knott T, Müller T, Hämmerle H (1998) A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res Brain Res Protoc 2(4):229–242PubMedGoogle Scholar
  8. Einevoll GT, Lindén H, Tetzlaff T, Łęski S, Pettersen KH (2012) Local field potentials. Biophysical origin and analysis. In: Quiroga RQ and Panzer S (Ed.) Principles of neural coding. CRC Press, Boca Raton pp 37–61Google Scholar
  9. Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770–785PubMedGoogle Scholar
  10. Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24(7):2191–2198PubMedGoogle Scholar
  11. Goto T, Hatanaka R, Ogawa T, Sumiyoshi A, Riera J, Kawashima R (2010) An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. J Neurophysiol 104(6):3388–3412PubMedGoogle Scholar
  12. Gratiy SL, Devor A, Einevoll GT, Dale AM (2011) On the estimation of population-specific synaptic currents from laminar multielectrode recordings. Front Neuroinform 5:32PubMedCentralPubMedGoogle Scholar
  13. Haberly LB, Shepherd GM (1973) Current-density analysis of summed evoked potentials in opossum prepyriform cortex. J Neurophysiol 36(4):789–802PubMedGoogle Scholar
  14. Hunt MJ, Falinska M, Łeski S, Wójcik DK, Kasicki S (2011) Differential effects produced by ketamine on oscillatory activity recorded in the rat hippocampus, dorsal striatum and nucleus accumbens. J Psychopharmacol 25(6):808–821PubMedGoogle Scholar
  15. Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72(5):847–858PubMedCentralPubMedGoogle Scholar
  16. Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838PubMedCentralPubMedGoogle Scholar
  17. Łęski S, Wójcik DK, Tereszczuk J, Świejkowski DA, Kublik E, Wróbel A (2007) Inverse current-source density method in 3D: reconstruction fidelity, boundary effects, and influence of distant sources. Neuroinformatics 5(4):207–222PubMedGoogle Scholar
  18. Łęski S, Kublik E, Swiejkowski DA, Wróbel A, Wójcik DK (2010) Extracting functional components of neural dynamics with independent component analysis and inverse current source density. J Comput Neurosci 29(3):459–473PubMedGoogle Scholar
  19. Łęski S, Pettersen KH, Tunstall B, Einevoll GT, Gigg J, Wójcik DK (2011) Inverse current source density method in two dimensions: inferring neural activation from multielectrode recordings. Neuroinformatics 9(4):401–425PubMedCentralPubMedGoogle Scholar
  20. Łęski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9(7):e1003137PubMedCentralPubMedGoogle Scholar
  21. Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72(5):859–872PubMedGoogle Scholar
  22. Makarov VA, Makarova J, Herreras O (2010) Disentanglement of local field potential sources by independent component analysis. J Comput Neurosci 29(3):445–457PubMedGoogle Scholar
  23. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37–100PubMedGoogle Scholar
  24. Nicholson C (1973) Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. IEEE Transactions on Biomedical Engineering 20(4):278–288Google Scholar
  25. Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38(2):356–368PubMedGoogle Scholar
  26. Nunez PL, Srinivasan R (2005) Electric fields of the brain: the neurophysics of EEG. MIT Press, Cambridge, MAGoogle Scholar
  27. Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT (2006) Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J Neurosci Methods 154(1–2):116–133PubMedGoogle Scholar
  28. Pitts WH (1952) Investigations on synaptic transmission. In: von Foerster H (Ed.) Cybernetics, Transactions of the 9th conference, Josiah Macy Foundation, New York pp 159–166Google Scholar
  29. Potworowski J, Glabska H, Leski S, Wojcik D (2011) Extracting activity of individual cell populations from multielectrode recordings. BMC Neurosci 12(Suppl 1):374Google Scholar
  30. Potworowski J, Jakuczun W, Łęski S, Wójcik D (2012) Kernel current source density method. Neural Comput 24(2):541–575PubMedGoogle Scholar
  31. Rappelsberger P, Pockberger H, Petsche H (1981) Current source density analysis: methods and application to simultaneously recorded field potentials of the rabbit’s visual cortex. Pflugers Arch 389(2):159–170PubMedGoogle Scholar
  32. Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79(2):375–390PubMedCentralPubMedGoogle Scholar
  33. Schoelkopf B, Smola A (2002) Learning with Kernels. Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  34. Somogyvári Z, Zalányi L, Ulbert I, Erdi P (2005) Model-based source localization of extracellular action potentials. J Neurosci Methods 147(2):126–137PubMedGoogle Scholar
  35. Somogyvári Z, Cserpán D, Ulbert I, Erdi P (2012) Localization of single-cell current sources based on extracellular potential patterns: the spike CSD method. Eur J Neurosci 36(10):3299–3313PubMedGoogle Scholar
  36. Stevens CF (1966) Neurophysiology: a primer. Wiley, New YorkGoogle Scholar
  37. Tranquillo J (2008) Quantitative neurophysiology. Morgan and Claypool Publishers, San RafaelGoogle Scholar
  38. Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93(4):2194–2232PubMedGoogle Scholar
  39. Vaknin G, DiScenna PG, Teyler TJ (1988) A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume. J Neurosci Methods 24(2):131–135PubMedGoogle Scholar

Further Reading

  1. Scholarpedia Google Scholar
  2. Local field potentialGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of NeurophysiologyNencki Institute of Experimental BiologyWarsawPoland