Skip to main content

Dynamic Diseases of the Brain

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Dynamical diseases; Periodic diseases

Definition

A dynamic disease of the nervous system is a disease that arises from abnormalities in neural control mechanisms. Whereas traditional approaches for classifying neurological diseases are based on (static) anatomical, cellular, and molecular abnormalities, the focus here is on dynamics, namely, the variation of signs and symptoms of disease as a function of time. The hallmarks of dynamic diseases are sudden, qualitative changes in the temporal pattern of clinical signs. Identifying a neurological disorder as a dynamic disease has two major implications: (1) the observed dynamics and their responses to various manipulations provide important insights into the nature and abnormality of neural control, and (2) based on computational models of the abnormalities, it may be possible to devise novel treatment strategies for dynamic diseases of the brain.

Detailed Description

Historical Perspectives

The concept of a dynamic disease...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baier G, Goodfellow M, Taylor PN, Wang Y, Garry DJ (2012) The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front Physiol 3:281

    PubMed Central  PubMed  Google Scholar 

  • Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New York

    Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    CAS  PubMed  Google Scholar 

  • Bélair J, Glass L, an der Heiden U, Milton J (1995) Dynamical disease: mathematical analysis of human illness. American Institute of Physics, Woodbury

    Google Scholar 

  • Buice MA, Cowan JD (2009) Statistical mechanics of the neocortex. Prog Biophys Mol Biol 99:53–86

    PubMed  Google Scholar 

  • Cabrera JL (2005) Controlling instability with delayed antagonistic stochastic dynamics. Phys A Stat Mech Appl 356(1):25–30

    Google Scholar 

  • Cabrera JL, Milton JG (2002) On-off intermittency in a human balancing task. Phys Rev Lett 89:158702

    PubMed  Google Scholar 

  • Chkhenkeli SA, Milton J (2003) Dynamic epileptic systems versus static epileptic foci? In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer, Berlin/Heidelberg/New York, pp 25–36

    Google Scholar 

  • Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Moroko A, Fabinyi G, D’Souza W, Yerra R, Archer J, Litewka L, Hosking S, Lightfoot P, Ruedebusch V, Sheffield WD, Snyder D, Leyde K, Himes D (2013) Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 12(6):563–571

    PubMed  Google Scholar 

  • Dahlem MA, Schneider FM, Schöll E (2008) Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke. Chaos Interdiscip J Nonlinear Sci 18(2):026110

    Google Scholar 

  • Ebersole JS, Milton J (2003) The electroencephalogram (EEG): a measure of neural synchrony. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer, Berlin/Heidelberg/New York, pp 51–68

    Google Scholar 

  • Foley C, Mackey MC (2009) Mathematical model for G-CSF administration after chemotherapy. J Theor Biol 257(1):27–44

    CAS  PubMed  Google Scholar 

  • Foss J, Milton J (2000) Multistability in recurrent neural loops arising from delay. J Neurophysiol 84:975–985

    CAS  PubMed  Google Scholar 

  • Foss J, Moss F, Milton J (1997) Noise, multistability, and delayed recurrent loops. Phys Rev E 55:4536–4543

    CAS  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Google Scholar 

  • Glass L, Mackey MC (1979) Pathological conditions resulting from instabilities in physiological control systems. Annu NY Acad Sci 316:214–235

    CAS  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton

    Google Scholar 

  • Goldbeter A (2011) A model for the dynamics of bipolar disorders. Prog Biophys Mol Biol 105(1):119–127

    PubMed  Google Scholar 

  • Goodfellow M, Schindler K, Baier G (2011) Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. Neuroimage 55:920–932

    PubMed  Google Scholar 

  • Goodfellow M, Schindler K, Baier G (2012) Self-organised transients in a neural mass model of epileptogenic tissue dynamics. Neuroimage 59:2644–2660

    PubMed  Google Scholar 

  • Guckenheimer J (1995) A robust hybrid stabilization strategy for equilibria. IEEE Trans Autom Control 40:321–326

    Google Scholar 

  • Guttman R, Lewis S, Rinzel J (1980) Control of repetitive ring in squid axon membrane as a model for a neuron oscillator. J Physiol 305:377–395

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hramov A, Koronovskii AA, Midzyanovskaya IS, Sitnikova E, Van Rijn CM (2006) On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy. Chaos Interdiscip J Nonlinear Sci 16(4):043111

    Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of ex-citability and bursting. MIT Press, Cambridge, MA

    Google Scholar 

  • Kleinfeld D, Raccuia-Behling F, Chiel HJ (1990) Circuits constructed from identified aplysia neurons exhibit multiple patterns of persistent activity. Biophys J 57(4):697–715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopes Da Silva FH, Pijn JP, Wadman WJ (1994) Dynamics of local neuronal networks: control parameters and state bifurcations in epileptogenesis. Prog Brain Res 102:359–370

    CAS  PubMed  Google Scholar 

  • Lopes Da Silva FH, Blanes W, Kalitzin SN, Parra J, Suczynski P, Velis DN (2003) Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Biomed Eng 50:540–548

    PubMed  Google Scholar 

  • Ma J, Wu J (2007) Multistability in spiking neuron models of delayed recurrent inhibitory loops. Neural Comput 19(8):2124–2148

    PubMed  Google Scholar 

  • Mackey MC, an der Heiden U (1982) Dynamical diseases and bifurcations: understanding functional disorder in physiological systems. Funkt Biol Med 1:156–162

    Google Scholar 

  • Mackey MC, an der Heiden U (1984) The dynamics of recurrent inhibition. J Math Biol 19:211–225

    CAS  PubMed  Google Scholar 

  • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

    CAS  PubMed  Google Scholar 

  • Mackey MC, Milton JG (1987) Dynamical diseases. Annu NY Acad Sci 504:16–32

    CAS  Google Scholar 

  • Milton JG (2000) Epilepsy: multistability in a dynamic disease. In: Walleczek J (ed) Self-organized biological dynamics and nonlinear control. Cambridge University Press, New York, pp 374–386

    Google Scholar 

  • Milton J (2003) Insights into seizure propagation from axonal conduction times. In: Milton J, Jung P (eds) Epilepsy as a dynamic disease. Springer, Berlin/Heidelberg/New York, pp 15–23

    Google Scholar 

  • Milton J (2012) Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur J Neurosci 35:2156–2163

    Google Scholar 

  • Milton J, Black D (1995) Dynamic diseases in neurology and psychiatry. Chaos 5(1):8–13

    PubMed  Google Scholar 

  • Milton JG, Foss J (1997) Oscillations and multistability in delayed feedback control. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) The art of mathematical modeling: case studies in ecology, physiology and cell biology. Prentice-Hall, Englewood Cliffs, pp 179–198

    Google Scholar 

  • Milton J, Jung P (2003) Epilepsy as a dynamic disease. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Milton JG, Chkhenkeli SA, Towle VL (2007) Brain connectivity and the spread of epileptic seizures. In: Jirsa VK, McIntosh AR (eds) Handbook of brain connectivity. Springer, Berlin/Heidelberg/New York, pp 477–503

    Google Scholar 

  • Osorio I, Frei MG (2009) Real-time detection, quantification, warning, and control of epileptic seizures: the foundations for a scientific epileptology. Epilepsy Behav 16(3):391–396

    CAS  PubMed  Google Scholar 

  • Osorio I, Frei MG, Sornette D, Milton J, Lai YVC (2010) Epileptic seizures: quakes of the brain? Phys Rev E 82:021919

    Google Scholar 

  • Pakdaman K, Grotta-Ragazzo C, Malta CP (1998) Transient regime duration in continuous-time networks with delay. Phys Rev E 58:3623–3627

    CAS  Google Scholar 

  • Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in dissipative dynamical systems. Commun Math Phys 74:189–198

    Google Scholar 

  • Quan A, Osorio I, Ohira T, Milton J (2011) Vulnerability to paroxysmal oscillations in delayed neural networks: a basis for nocturnal frontal lobe epilepsy? Chaos 21:047512

    PubMed Central  PubMed  Google Scholar 

  • Rajna P, Lona C (1989) Sensory stimulation for inhibition of epileptic seizures. Epilepsia 30(2):168–174

    CAS  PubMed  Google Scholar 

  • Sornette D (2004) Critical phenomena in natural sciences: chaos, fractals, self-organization, and disorder: concepts and tools. Springer, Berlin/Heidelberg

    Google Scholar 

  • Sornette D, Ouillon G (2012) Dragon kings: mechanism, statistical methods, and empirical evidence. Eur Phys J Spec Top 205:1–26

    Google Scholar 

  • Stead M, Bower M, Brinkmann BH, Lee K, Marsh RW, Meyer FB, Litt B, Van Gompel J, Worrell GA (2010) Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133(9):2789–2797

    PubMed Central  PubMed  Google Scholar 

  • Suffczynski P, Kalitzin S, Lopes Da Silva FH (2001) Dynamics of nonconvulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484

    Google Scholar 

  • Tasaki I (1959) Demonstration of two stable states of the nerve membrane in potassium-rich media. J Physiol (Lond) 148:306–331

    CAS  Google Scholar 

  • Timme M, Wolf F (2008) The simplest problem in the collective dynamics of neural networks: is synchrony stable? Nonlinearity 21:1579–1599

    Google Scholar 

  • Valentín A, Alarcón G, Honavar M, García Seoane JJ, Selway RP, Polkey CE, Binnie CD (2005) Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurol 4(11):718–726

    PubMed  Google Scholar 

  • Venkadesan M, Guckenheimer J, Valero-Cuevas FJ (2007) Manipulating the edge of stability. J Biomech 40:1653–1661

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Goodfellow M, Taylor PN, Baier G (2012) Phase space approach for modeling of epileptic dynamics. Phys Rev E 85:061918

    Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur J Neurosci 15:1499–1508

    CAS  PubMed  Google Scholar 

  • Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22:343–356

    PubMed Central  PubMed  Google Scholar 

  • Wilson HR (1999) Simplified dynamics of human and mammalian neocortical neurons. J Theor Biol 200:375–388

    CAS  PubMed  Google Scholar 

  • Zakynthinaki MS, Stirling JR, Cordent Martinez CA, Diaz L, de Durana A, Quintana MS, Romo GR, Molinueve JS (2010) Modeling the basin of attraction as a two-dimensional manifold from experimental data: applications to balance in humans. Chaos 20:013119

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerold Baier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Baier, G., Milton, J. (2015). Dynamic Diseases of the Brain. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_503

Download citation

Publish with us

Policies and ethics