Skip to main content

Multistability in Neurodynamics: Overview

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Bistability; Coexistence; Fold bifurcation; Hysteresis; Subcritical bifurcation

Definition

Multistability in neurodynamics is the coexistence of two or more observable regimes of activity, i.e., attractors, in the phase space of a neuronal system. In the absence of noise or perturbation, the neuronal system permanently exhibits one of the regimes. Multistability suggests that by an appropriate choice of perturbation or by resetting the initial state of the system, one could induce a switch from one regime into another.

Detailed Description

Multistable neuronal system can exhibit two or more regimes of activity, depending on its initial state. Both isolated neurons and neuronal networks can exhibit coexistence of several activity regimes. The coexistence of silence, subthreshold oscillations, tonic spiking, and bursting regimes with each other has been observed in a number of theoretical and experimental studies. A multistable neuronal system can show long-lasting responses to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnett WH, O’Brien G, Cymbalyuk GS (2013) Bistability of silence and seizure-like bursting. J Neurosci Methods 220(2):179–189

    Google Scholar 

  • Briggman KL, Kristan WB (2008) Multifunctional pattern-generating circuits. Annu Rev Neurosci 31:271–294

    CAS  PubMed  Google Scholar 

  • Butera RJ (1998) Multirhythmic bursting. Chaos 8:274–284

    PubMed  Google Scholar 

  • Canavier CC, Baxter DA, Clark JW, Byrne JH (1994) Multiple modes of activity in a model neuron suggest a novel mechanism for the effects of neuromodulators. J Neurophysiol 72:872–882

    CAS  PubMed  Google Scholar 

  • Cressman JR Jr, Ullah G, Ziburkus J, Schiff SJ, Barreto E (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci 26:159–170

    PubMed Central  PubMed  Google Scholar 

  • Cymbalyuk G, Shilnikov A (2005) Coexistence of tonic spiking oscillations in a leech neuron model. J Comput Neurosci 18:255–263

    PubMed  Google Scholar 

  • Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL (2002) Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J Neurosci 22:10580–10592

    CAS  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK (2006) Beyond bistability: biophysics and temporal dynamics of working memory. Neuroscience 139:119–133

    CAS  PubMed  Google Scholar 

  • Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420:173–178

    CAS  PubMed  Google Scholar 

  • Fernandez FR, Engbers JD and Turner RW (2007) Firing dynamics of cerebellar purkinje cells. J Neurophysiol 98:278–294. doi:10.1152/jn.00306.2007

    Google Scholar 

  • Forger DB, Paydarfar D (2004) Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. J Theor Biol 230:521–532

    PubMed  Google Scholar 

  • Fröhlich F, Bazhenov M (2006) Coexistence of tonic firing and bursting in cortical neurons. Phys Rev E 74:031922

    Google Scholar 

  • Frohlich F, Sejnowski TJ, Bazhenov M (2010) Network bistability mediates spontaneous transitions between normal and pathological brain states. J Neurosci 30:10734–10743

    PubMed Central  CAS  PubMed  Google Scholar 

  • Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204

    CAS  PubMed  Google Scholar 

  • Gutkin BS, Jost J, Tuckwell HC (2009) Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise. Naturwissenschaften 96:1091–1097

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol 305:377–395

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hahn PJ, Durand DM (2001) Bistability dynamics in simulations of neural activity in high-extracellular-potassium conditions. J Comput Neurosci 11:5–18

    CAS  PubMed  Google Scholar 

  • Izhikevich EM (2010) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, Cambridge, MA, London, England

    Google Scholar 

  • Krishnan GP, Bazhenov M (2011) Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. J Neurosci 31:8870–8882

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer, New York

    Google Scholar 

  • Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Hðusser M (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8:202–11.

    Google Scholar 

  • Malashchenko T, Shilnikov A, Cymbalyuk G (2011a) Six types of multistability in a neuronal model based on slow calcium current. PLoS One 6:e21782

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malashchenko T, Shilnikov A, Cymbalyuk G (2011b) Bistability of bursting and silence regimes in a model of a leech heart interneuron. Phys Rev E 84:041910

    Google Scholar 

  • Marder E, Abbott LF, Turrigiano GG, Liu Z, Golowasch J (1996) Memory from the dynamics of intrinsic membrane currents. Proc Natl Acad Sci U S A 93:13481–13486

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marin BM, Barnett WH, Doloc-Mihu A, Calabrese RL, Cymbalyuk GS (2013) High prevalence of multistability of rest states and bursting in a database of a model neuron. PLOS Computational Biology 9(3):e1002930. doi:10.1371/journal.pcbi.1002930

    Google Scholar 

  • Nadim F, Brezina V, Destexhe A, Linster C (2008) State dependence of network output: modeling and experiments. J Neurosci 28:11806–11813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newman JP, Butera RJ (2010) Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons. Chaos 20:023118

    PubMed Central  PubMed  Google Scholar 

  • Rinzel J (1978) On repetitive activity in nerve. Fed Proc 37:2793–2802

    CAS  PubMed  Google Scholar 

  • Shilnikov A, Calabrese RL, Cymbalyuk G (2005) Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys Rev E Stat Nonlin Soft Matter Phys 71:056214

    PubMed  Google Scholar 

  • Terman DH, Ermentrout GB (2010) Mathematical foundations of neuroscience. Springer, New York, Dordrecht, Heidelberg, London

    Google Scholar 

  • Venugopal S, Travers JB, Terman DH (2007) A computational model for motor pattern switching between taste-induced ingestion and rejection oromotor behaviors. J Comput Neurosci 22:223–238

    PubMed  Google Scholar 

  • Wang XJ (1994) Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. Neuroscience 59:21–31

    CAS  PubMed  Google Scholar 

  • Ziburkus J, Cressman JR, Barreto E, Schiff SJ (2006) Interneuron and pyramidal cell interplay during in vitro seizure-like events. J Neurophysiol 95:3948–3954

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by National Science Foundation grant PHY-0750456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Cymbalyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Cymbalyuk, G. (2015). Multistability in Neurodynamics: Overview. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_442

Download citation

Publish with us

Policies and ethics