Skip to main content

Retinotopic Development, Models of

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 104 Accesses

Synonyms

Neural map formation, Retinocollicular development, Retinogeniculate development, Topographic map formation

Definition

Axons of neighboring retinal ganglion cells (RGCs) coming from the eye normally terminate in neighboring parts of target brain regions, such as the optic tectum of amphibians or the superior colliculus (SC) and lateral geniculate nucleus of mammals. This orderly arrangement of connections is termed a retinotopic map. Theoretical models of retinotopic map formation help us understand how these connections develop in early life and how maps might reform after surgical or experimental manipulations.

Detailed Description

What Is a Retinotopic Map?

A projection of connections is termed a topographic map when neighboring neurons in the source region project to neighboring regions in the target. Topographic maps are found in many sensory systems. Perhaps the most-studied topographic map is the projection from the retina to primary targets in the brain, which ensures...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490(7419):219–225. doi:10.1038/nature11529

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cang J, Feldheim DA (2013) Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 36:51–77. doi:10.1146/annurev-neuro-062012-170341

    CAS  PubMed  Google Scholar 

  • Drescher U, Bonhoeffer F, Muller B (1997) The Eph family in retinal axon guidance. Curr Opin Neurobiol 7(1):75–80. doi:10.1016/S0959-4388(97)80123-7

    CAS  PubMed  Google Scholar 

  • Goodhill GJ (2007) Contributions of theoretical modeling to the understanding of neural map development. Neuron 56(2):301–311. doi:10.1016/j.neuron.2007.09.027

    CAS  PubMed  Google Scholar 

  • Goodhill GJ, Xu J (2005) The development of retinotectal maps: a review of models based on molecular gradients. Network 16(1):5–34. doi:10.1080/09548980500254654

    PubMed  Google Scholar 

  • Maffei L, Galli-Resta L (1990) Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci U S A 87(7):2861–2864. doi:10.1073/pnas.87.7.2861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siegel F, Heimel JA, Peters J, Lohmann C (2012) Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Curr Biol 22(3):253–258. doi:10.1016/j.cub.2011.12.026

    CAS  PubMed  Google Scholar 

  • Sperry R (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci U S A 50:703–710. doi:10.1073/pnas.50.4.703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sterratt DC (2013) On the importance of countergradients for the development of retinotopy: insights from a generalised Gierer model. PLoS One 8(6):e67,096. doi:10.1371/journal.pone.0067096

    CAS  Google Scholar 

  • Sterratt DC, Hjorth JJJ (2013) Retinocollicular mapping explained? Vis Neurosci 30(4):125–128. doi:10.1017/S0952523813000254

    PubMed  Google Scholar 

  • Swindale NV (1996) The development of topography in the visual cortex: a review of models. Netw Comput Neural Syst 7(2):161–247. doi:10.1088/0954-898x/7/2/002

    CAS  Google Scholar 

  • Triplett JW, Pfeiffenberger C, Yamada J, Stafford BK, Sweeney NT, Litke AM, Sher A, Koulakov AA, Feldheim DA (2011) Competition is a driving force in topographic mapping. Proc Natl Acad Sci U S A 108(47):19,060–19,065. doi:10.1073/pnas.1102834108

    CAS  Google Scholar 

  • van Ooyen A (2001) Competition in the development of nerve connections: a review of models. Netw Comput Neural Syst 12(1):R1–R47. doi:10.1080/713663154

    Google Scholar 

  • von der Malsburg C, Willshaw DJ (1977) How to label nerve cells so that they can interconnect in an ordered fashion. Proc Natl Acad Sci U S A 74(11):5176–5178. doi:10.1073/pnas.74.11.5176

    PubMed Central  PubMed  Google Scholar 

  • Willshaw DJ, von der Malsburg C (1976) How patterned neural connections can be set up by self-organization. Proc R Soc Lond B Biol Sci 194(1117):431–445. doi:10.1098/rspb.1976.0087

    CAS  PubMed  Google Scholar 

  • Wong ROL (1999) Retinal waves and visual system development. Annu Rev Neurosci 22:29–47. doi:10.1146/annurev.neuro.22.1.29

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Eglen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Eglen, S.J. (2015). Retinotopic Development, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_406

Download citation

Publish with us

Policies and ethics