Encyclopedia of Computational Neuroscience

2015 Edition
| Editors: Dieter Jaeger, Ranu Jung

Diffusion Equation

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6675-8_186

Synonyms

Definition

The diffusion equation (DE) is a second-order parabolic partial differential equation describing mass transport phenomena due to thermal motion of particles (Crank 1975).

Detailed Description

Diffusion is an important transport mechanism in neurons (Bloodgood 2005; Ehlers et al 2007; Korkotian and Segal 2006; Makin and Malinow 2009; Qian and Sejnowki 1988; Renner et al. 2009; Sabatini et al. 2002; Santamaria 2006; Schmidt 2007a. Smith et al. 1993; Soler and Sabatini 2006). It takes place in the cytosol, the cell membrane and the endoplasmic reticulum. Subject to diffusion are both ions (Ca +, Na +, K +, Cl-, etc) and large complex molecules (lipids, proteins, DNA, RNA, etc.). The physical process of diffusion in absence of any chemical reactions is described by the diffusion equation:
$$ \frac{\partial C\left(\mathbf{x},t\right)}{\partial t}=\nabla \mathit{\cdotp}\left(D\left(\mathbf{x},t\right)\nabla C\left(\mathbf{x},t\right)\right)...
This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

This work was partially supported by NSF IOS-1209029 and NSF EF-1137897

References

  1. Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310:866–869PubMedGoogle Scholar
  2. Bressloff PC, Earnshaw BA (2009) A dynamic corral model of receptor trafficking at a synapse. Biophys J 96:1786–1802PubMedCentralPubMedGoogle Scholar
  3. Brown SA, Morgan F, Watras J, Loew LM (2008) Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys J 95:1795–1812PubMedCentralPubMedGoogle Scholar
  4. Crank J (1975) The mathematics of diffusion. Clarendon, OxfordGoogle Scholar
  5. Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–460PubMedCentralPubMedGoogle Scholar
  6. Holcman D, Triller A (2006) Modeling synaptic dynamics driven by receptor lateral diffusion. Biophys J 91:2405–2415PubMedCentralPubMedGoogle Scholar
  7. Jedlicka P, Deller T, Gutkin BS, Backus KH (2011) Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus 21:885–898PubMedGoogle Scholar
  8. Korkotian E, Segal M (2006) Spatially confined diffusion of calcium in dendrites of hippocampal neurons revealed by flash photolysis of caged calcium. Cell Calcium 40:441–449PubMedGoogle Scholar
  9. Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64:381–390PubMedCentralPubMedGoogle Scholar
  10. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77Google Scholar
  11. Philibert J (2005) One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundamentals 2:1.1–1.10Google Scholar
  12. Qian N, Sejnowski TJ (1988) Electro-diffusion model of electrical conduction in neuronal processes. In: Wood CD, McGaugh JL, Alkon DL (eds) Cellular mechanism of conditioning and behavioral plasticity. Pergamon, London, pp 237–244Google Scholar
  13. Renner M, Choquet D, Triller A (2009) Control of the postsynaptic membrane viscosity. J Neurosci 29:2926–2937PubMedGoogle Scholar
  14. Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33:439–452PubMedGoogle Scholar
  15. Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648PubMedCentralPubMedGoogle Scholar
  16. Santamaria F, Gonzalez J, Augustine GJ, Raghavachari S (2010) Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. PLoS Comput Biol 6:e1000780PubMedCentralPubMedGoogle Scholar
  17. Santamaria F, Wils S, De Schutter E, Augustine GJ (2011) The diffusional properties of dendrites depend on the density of dendritic spines. Eur J Neurosci 34:561–568PubMedCentralPubMedGoogle Scholar
  18. Schmidt H, Arendt O, Brown EB, Schwaller B, Eilers J (2007a) Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones. J Neurochem 100:727–735PubMedGoogle Scholar
  19. Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J (2007b) Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2 + -binding proteins. J Physiol 581:619–629PubMedCentralPubMedGoogle Scholar
  20. Smith SJ, Buchanan J, Osses LR, Charlton MP, Augustine GJ (1993) The spatial distribution of calcium signals in squid presynaptic terminals. J Physiol 472:573–593PubMedCentralPubMedGoogle Scholar
  21. Soler-Llavina GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9:798–806PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.UTSA Neurosciences InstituteThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA