Encyclopedia of Computational Neuroscience

2015 Edition
| Editors: Dieter Jaeger, Ranu Jung

Dendritic Computation

  • Panayiota PoiraziEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6675-8_125



Dendritic computations refer to the ability of individual dendritic branches to perform elementary computations on incoming signals. These computations include addition, subtraction, multiplication, and division and can also take the form of logical operations (e.g., AND, OR, XOR). In this chapter, we discuss evidence regarding the type of computations that have been observed in dendritic branches of multiple neuron types as well as the impact of these computations on the function of neural cells and circuits.

Detailed Description

Dendrites are elaborate processes that extend from the cell body of neurons and form the locus of synaptic communication between cells. The biophysical mechanisms that reside in dendrites allow them to locally integrate synaptic inputs in a linear and/or nonlinear manner enabling them to perform different types of computations (London and Häusser 2005;...

This is a preview of subscription content, log in to check access.


  1. Agmon-Snir H, Segev I (1993) Signal delay and input synchronization in passive dendritic structures. J Neurophysiol 70(5):2066–2085PubMedGoogle Scholar
  2. Antic SD, Zhou W-L et al (2010) The decade of the dendritic NMDA spike. J Neurosci Res 88(14):2991–3001PubMedGoogle Scholar
  3. Ariav G, Polsky A et al (2003) Submillisecond precision of the input–output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23(21):7750–7758PubMedGoogle Scholar
  4. Bilkey D, Schwartzkroin PA (1990) Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells. Brain Res 405:320–325Google Scholar
  5. Branco T, Hausser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20(4):494–502PubMedGoogle Scholar
  6. Branco T, Hausser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69(5):885–892PubMedGoogle Scholar
  7. Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22:383–394PubMedGoogle Scholar
  8. Chagnac-Amitai Y, Luhmann HJ, Prince DA (1990) Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296:598–613PubMedGoogle Scholar
  9. Ferrante M, Migliore M, Ascoli GA (2013) Functional impact of dendritic branch-point morphology. J Neurosci 33(5):2156–2165PubMedCentralPubMedGoogle Scholar
  10. Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26(7):2088–2100PubMedGoogle Scholar
  11. Gomez JM, Mel BW, Poirazi P (2011) Distinguishing linear vs. nonlinear integration in CA1 radial oblique dendrites: it’s about time. Front Comp Neurosci 5:44 Epub 2011 Nov 14Google Scholar
  12. Hardie J, Spruston N (2009) Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. J Neurosci 29(10):3233–3241PubMedCentralPubMedGoogle Scholar
  13. Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N (2009) Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron 63(2):171–177PubMedCentralPubMedGoogle Scholar
  14. Krichmar J, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941:11–28PubMedGoogle Scholar
  15. Larkum M, Nevian T (2008) Synaptic clustering by dendritic signalling mechanisms. Curr Opin Neurobiol 18:321–331PubMedGoogle Scholar
  16. Larkum ME, Zhu JJ et al (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J Physiol 533(Pt 2):447–466PubMedCentralPubMedGoogle Scholar
  17. London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532PubMedGoogle Scholar
  18. Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50(2):291–307PubMedGoogle Scholar
  19. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian synaptic plasticity in hippocampal neurons. Science 275:209–213PubMedGoogle Scholar
  20. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366PubMedGoogle Scholar
  21. Major G, Polsky A et al (2008) Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J Neurophysiol 99(5):2584–2601PubMedGoogle Scholar
  22. McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133Google Scholar
  23. Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3(5):362–370PubMedGoogle Scholar
  24. Nevian T, Larkum ME et al (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10(2):206–214PubMedGoogle Scholar
  25. Oviedo H, Reyes AD (2012) Integration of subthreshold and suprathreshold excitatory barrages along the somatodendritic axis of pyramidal neurons. PLoS One 7(3)Google Scholar
  26. Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29(3):779–796PubMedGoogle Scholar
  27. Poirazi P, Brannon T et al (2003a) Pyramidal neuron as two-layer neural network. Neuron 37(6):989–999PubMedGoogle Scholar
  28. Poirazi P, Brannon T, Mel BW (2003b) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37:977–987PubMedGoogle Scholar
  29. Polsky A, Mel BW et al (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7(6):621–627PubMedGoogle Scholar
  30. Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30(5):1138–1168PubMedGoogle Scholar
  31. Remy S, Spruston N (2007) Dendritic spikes induce single-burst long-term potentiation. Proc Natl Acad Sci USA 104(43):17192–17197PubMedCentralPubMedGoogle Scholar
  32. Rinzel J, Rall W (1974) Transient response in a dendritic neuron model for current injected at one branch. Biophys J 14(10):759–790PubMedCentralPubMedGoogle Scholar
  33. Schaefer A, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143–3154PubMedGoogle Scholar
  34. Schiller J, Koester H, Major G, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289PubMedGoogle Scholar
  35. Sheasby B, Fohlmeister JF (1999) Impulse encoding across the dendritic morphologies of retinal ganglion cells. J Neurophysiol 81:1685–1698PubMedGoogle Scholar
  36. Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comp Biol 8(4):e1002489. doi:10.1371/journal.pcbi.1002489Google Scholar
  37. Sidiropoulou K, Pissadaki EK et al (2006) Inside the brain of a neuron. EMBO Rep 7(9):886–892PubMedCentralPubMedGoogle Scholar
  38. Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11(7):474–489PubMedGoogle Scholar
  39. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221PubMedGoogle Scholar
  40. Stuart G, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72PubMedGoogle Scholar
  41. Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18(10):3501–3510PubMedGoogle Scholar
  42. Stuart G, Spruston N, Hausser M (2008) Dendrites. Oxford University Press, OxfordGoogle Scholar
  43. van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol 6(5)Google Scholar
  44. Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85(2):926–937PubMedGoogle Scholar
  45. Wei DS, Mei YA, Bagal A, Kao JP, Thompson SM, Tang CM (2001) Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293(5538):2272–2275PubMedGoogle Scholar
  46. Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295(5561):1907–1910PubMedGoogle Scholar
  47. Yang CR, Seamans JK, Gorelova N (1996) Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci 16(5):1904–1921PubMedGoogle Scholar
  48. Yuste R, Gutnick MJ et al (1994) Ca2+ accumulations in dendrites of neocortical pyramidal neurons: an apical band and evidence for functional compartments. Neuron 13:23–43PubMedGoogle Scholar
  49. Zador AM, Agmon-Snir H, Segev I (1995) The morphoelectrotonic transform: a graphical approach to dendritic function. J Neurosci 15(3 Pt 1):1669–1682PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Foundation for Research and Technology-Hellas (FORTH)Institute of Molecular Biology and Biotechnology (IMBB)HeraklionGreece