Skip to main content

Chip-Based MEMS for Healthcare Application

  • Living reference work entry
  • First Online:
  • 131 Accesses

Abstract

This paper reviews the recent development of micro-/nanosensors to detect air pollutants. Various sensor technologies to measure particles and gaseous pollutants are introduced. For particulate pollutants including particulate matter (PM) 10 (PM10), PM2.5, and nanoparticles, the development and sensitivities of resonate sensors are investigated. For gaseous pollutant detection, nanostructured metal oxide, surface acoustic wave sensors, field-effect transistor sensors, and microcantilever sensor system are briefly discussed. Sensors with a microelectromechanical systems (MEMS) technology showed high sensitivities, accuracy, and selectivity for air pollutants. Air quality monitoring chip using MEMS technology is based on the increasing demand for more compact, integrated, and personalized device to monitor the in situ level of air pollutants with simple operation and high precision in real time. Furthermore, the potential of the chip-based MEMS for healthcare applications is investigated.

This is a preview of subscription content, log in via an institution.

References

  • Arsat R, Breedon M, Shafiei M, Spizziri PG, Gilje S, Kaner RB, Wlodarski W (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467:344–347

    Article  Google Scholar 

  • Campbell MG, Sheberla D, Liu SF, Swager TM, Dincă M (2015) Cu3 (hexaiminotriphenylene) 2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew Chem 54:4349–4352

    Article  Google Scholar 

  • Carminati M, Pedalà L, Bianchi E, Nason F, Dubini G, Cortelezzi L, Sampietro M (2014) Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors. Sens Actuator A Phys 219:80–87

    Article  Google Scholar 

  • Dattoli EN, Davydov AV, Benkstein KD (2012) Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. Nanoscale 4:1760–1769

    Article  Google Scholar 

  • Ellern I, Venkatasubramanian A, Lee JH, Hesketh P, Stavila V, Robinson A, Allendorf M (2013) HKUST-1 coated piezoresistive microcantilever array for volatile organic compound sensing. Micro Nano Lett 8:766–769

    Google Scholar 

  • Feng P, Shao F, Shi Y, Wan Q (2014) Gas sensors based on semiconducting nanowire field-effect transistors. Sensors 14:17406–17429

    Article  Google Scholar 

  • Gnanamani S, Chidhambaram S, Prabaharan M (2012) Prospects of nanosensors in environmental and biomedical fields. In: Songjun Li, Yi Ge and He Li (Eds), Smart nanomaterials for sensor application. Bentham Science Publishers, pp 82–92

    Google Scholar 

  • Guo Z, Liu J, Jia Y, Chen X, Meng F, Li M, Liu J (2008) Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnology 19:345704

    Article  Google Scholar 

  • Koo WT, Choi SJ, Jang JS, Kim ID (2017) Metal-organic framework templated synthesis of ultrasmall catalyst loaded ZnO/ZnCo2O4 hollow spheres for enhanced gas sensing properties. Sci Rep 7:45074

    Article  Google Scholar 

  • Lang HP, Hegner M, Gerber C et al (2005) Cantilever array sensors. Mater Today 8:30–36

    Article  Google Scholar 

  • Li H, Yin Z, He Q, Li H, Huang X, Lu G, Zhang H (2012) Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8:63–67

    Article  Google Scholar 

  • Liu J, Guo Z, Meng F, Luo T, Li M, Liu J (2009) Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS (en) 0.5 (en= ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology 20:125501

    Article  Google Scholar 

  • Long Y, Wang Y, Du X, Cheng L, Wu P, Jiang Y (2015) The different sensitive behaviors of a hydrogen-bond acidic polymer-coated SAW sensor for chemical warfare agents and their simulants. Sensors 15:18302–18314

    Article  Google Scholar 

  • Naik AK, Hanay MS, Hiebert WK, Feng XL, Roukes ML (2009) Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol 4:445–450

    Article  Google Scholar 

  • Newman SM, Clarisse L, Hurtmans D, Marenco F, Johnson B, Turnbull K, Havemann S, Baran AJ, Haywood J (2012) A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and satellite radiative measurements. J Geophys Res 117:D00U13

    Article  Google Scholar 

  • Paprotny I, Doering F, Solomon PA, White RM, Gundel LA (2013) Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: design, fabrication, and experimental results. Sens Actuator A Phys 201:506–516

    Article  Google Scholar 

  • Park I, Yang D, Kang K (2015) MEMS/Nano-technologies for smart air environmental monitoring sensors. J Sens Sci Technol 24:281–286

    Article  Google Scholar 

  • Philipona R, Behrens K, Ruckstuhl C (2009) How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L02806

    Article  Google Scholar 

  • Poirier AE, Grundy A, Khandwala F, Friedenreich CM, Brenner DR (2017) Cancer incidence attributable to air pollution in Alberta in 2012. Can Med Assoc J 5:E524–E527

    Google Scholar 

  • Raorane D, Satyanarayana S, Majumdar A (2006) Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis. Sens Actuators B Chem 119:466–474

    Article  Google Scholar 

  • Sadek AZ, Wlodarski W, Shin K, Kaner RB, Kalantar-Zadeh K (2006) A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17:4488

    Article  Google Scholar 

  • Schmid S, Kurek M, Adolphsen JQ, Boisen A (2013) Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber. Sci Rep 3:1288

    Article  Google Scholar 

  • Shaymurat T, Tang Q, Tong Y, Dong L, Liu Y (2013) Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub-ppm levels at room temperature. Adv Mater 25:2269–2273

    Article  Google Scholar 

  • Stavila V, Schneider C, Mowry C, Zeitler TR, Greathouse JA, Robinson AL, Tu M (2016) Thin film growth of nbo MOFs and their integration with electroacoustic devices. Adv Funct Mater 26:1699–1707

    Article  Google Scholar 

  • Subhashini S, Vimala Juliet A (2015) Micro cantilever CO2 gas sensor based on mass. Appl Mech Mater 766:528–533

    Article  Google Scholar 

  • Takei R, Makimoto N, Okada H, Itoh T, Kobayashi T (2016) Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester. Jpn J Appl Phys 55:06GP14

    Article  Google Scholar 

  • Tian H, Fan H, Li M, Ma L (2015) Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens 1:243–250

    Article  Google Scholar 

  • Tkemaladze GS, Makhashvili KA (2016) Climate changes and photosynthesis. Ann Agrar Sci 14:119–126

    Article  Google Scholar 

  • Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013) Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens Actuators B Chem 189:146–156

    Article  Google Scholar 

  • Yim C, Lee M, Kim W, Lee S, Kim GH, Kim KT, Jeon S (2015a) Adsorption and desorption characteristics of alcohol vapors on a nanoporous ZIF-8 film investigated using silicon microcantilevers. ChemComm 51:6168–6171

    Google Scholar 

  • Yim C, Lee M, Yun M, Kim GH, Kim KT, Jeon S (2015b) CO2-selective nanoporous metal-organic framework microcantilevers. Sci Rep 5:10674

    Article  Google Scholar 

  • Zhao J, Liu M, Liang L, Wang W, Xie J (2016) Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor. Sens Actuator A Phys 238:379–388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nae Yoon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, J.S., Sivakumar, R., Lee, N.Y. (2020). Chip-Based MEMS for Healthcare Application. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6623-9

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics