Skip to main content

Visual Stimulation Systems

  • Living reference work entry
  • First Online:
  • 236 Accesses

Abstract

This chapter concerns trade-offs and design of implanted visual stimulation systems and the biochips used therein. The impacts on biochip design of biological intervention methods and overall systems architectures are discussed and a dual-module serial configured suprachoroidal visual stimulation system developed. Key biochip circuits for this system, implemented in a 0.35 μm high-voltage CMOS process, are described, and experimental results validating the electrical performance of the complete visual stimulation implant are presented.

This is a preview of subscription content, log in via an institution.

References

  • Cha K, Horch K, Normann RA (1992) Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng 20(4):439–449

    Article  Google Scholar 

  • Coulombe J, Sawan M, Gervais J-F (2007) A highly flexible system for microstimulation of the visual cortex: design and implementation. IEEE Trans Biomed Circuit Syst 1(4):258–269

    Article  Google Scholar 

  • Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 43(9):1091–1102

    Article  Google Scholar 

  • Jung LH, Shany N, Emperle A, Lehmann T, Byrnes-Preston P, Lovell NH, Suaning GJ (2013) Design of safe two-wire interface-driven chip-scale neurostimulator for visual prosthesis. IEEE J Solid-State Circuit 48(9):2217–2229

    Article  Google Scholar 

  • Margalit E, Sadda SR (2003) Retinal and optic nerve diseases. Artif Organs 27(11):963–974

    Article  Google Scholar 

  • Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O’Hearn TM, Liu W, Lazzi G, Dagnelie G, Scribner DA, de Juan E, Humayun MS (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356

    Article  Google Scholar 

  • Matteucci PB, Chen SC, Dodds C, Dokos S, Lovell NH, Suaning GS (2012) Threshold analysis of a quasimonopolar stimulation paradigm in visual prosthesis. In: Ann Int Conf EMBC. IEEE, pp 2997–3000

    Google Scholar 

  • Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198

    Article  Google Scholar 

  • Ortmanns M, Rocke A, Gehrke M, Tiedtke H-J (2007) A 232-channel epiretinal stimulator ASIC. IEEE J Solid-State Circuit 42(12):2946–2959

    Article  Google Scholar 

  • Rothermel A, Liu L, Aryan NP, Fischer M, Wuenschmann J, Kibbel S, Harscher A (2009) A CMOS chip with active pixel array and specific test features for subretinal implantation. IEEE J Solid-State Circuit 44(1):290–300

    Article  Google Scholar 

  • Shivdasani MN, Luu CD, Cicione R, Fallon JB, Allen PJ, Leuenberger J, Suaning GJ, Lovell NH, Shepherd RK, Williams CE (2010) Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng 7(3):036008

    Article  Google Scholar 

  • Tokuda T, Hiyama K, Sawamura S, Sasagawa K, Terasawa Y, Nishida K, Kitaguchi Y, Fujikado T, Tano Y, Ohta J (2009) CMOS-based multichip networked flexible retinal stimulator designed for image-based retinal prosthesis. IEEE Trans Electron Device 56(11):2577–2585

    Article  Google Scholar 

  • Tran N, Bai S, Yang J, Chun H, Kavehei O, Yang Y, Muktamath V, Ng D, Meffin H, Halpern M, Skafidas E (2014) A complete 256-electrode retinal prosthesis chip. IEEE J Solid-State Circuit 49(3):751–765

    Article  Google Scholar 

  • Troyk P, Bak M, Berg J, Bradley D, Cogan S, Erickson R, Kufta C, McCreery D, Schmidt E, Towle V (2003) A model for intracortical visual prosthesis research. Artif Organs 27(11):1005–1015

    Article  Google Scholar 

  • Weiland JD, Cho AK, Humayun MS (2011) Retinal prostheses: current clinical results and future needs. Ophthalmology 118(11):2227–2237

    Article  Google Scholar 

  • Wong YT, Dommel N, Preston P, Hallum LE, Lehmann T, Lovell NH, Suaning GJ (2007) Retinal neurostimulator for a multifocal vision prosthesis. IEEE Trans Neural Syst Rehabil Eng 15(3):425–434

    Article  Google Scholar 

  • Wong YT, Chen SC, Seo JM, Morley JW, Lovell NH, Suaning GJ (2009) Focal activation of the feline retina via a suprachoroidal electrode array. Vision Res 49:825–833

    Article  Google Scholar 

  • Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39(15):2555–2567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lehmann, T., Jung, L.H., Suaning, G.J., Lovell, N.H. (2015). Visual Stimulation Systems. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics