Skip to main content

Wireless Applications

Biomedical Signals Telemetry System

  • Living reference work entry
  • First Online:
  • 131 Accesses

Abstract

Implantable medical devices (IMDs) have been successfully developed in a wide range of medical and neuroscience applications to treat disorders or monitor biological signals from patients. Wireless data transmission is very essential for these IMDs to communicate with an external unit, control the parameters in the IMDs, and inform the monitoring status. The near-field data transfer techniques, called data telemetries, have been widely used for IMD applications thanks to relatively low power dissipation compared to far-field data communication. These data telemetries highly require the efficient data link between an external unit and IMDs considering several requirements, such as the data rate of the up-/downlinks, the distance between the transmitter (Tx) and receiver (Rx), robustness against link variations, and power consumption in the IMDs.

This is a preview of subscription content, log in via an institution.

References

  • Abdelhalim K, Kokarovtseva L, Velazquiez JLP, Genov R (2013) 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J Solid State Circuits 48(10):2478–2493

    Article  Google Scholar 

  • Borna A, Najafi K (2014) A low power light weight wireless multichannel microsystem for reliable neural recording. IEEE J Solid State Circuits 48(2):439–451

    Article  Google Scholar 

  • Chae MS, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehab Eng 17(4):312–321

    Article  Google Scholar 

  • Ebrazeh A, Mohseni P (2016) 30 pJ/b, 67 Mbps, centimeter-to-meter range data telemetry with an IR-UWB wireless link. IEEE Trans Biomed Circuits Syst 9(3):362–369

    Article  Google Scholar 

  • Gao Y, Zheng Y, Diao S, Toh WD, Ang CW, Je M, Heng CH (2011) Low-power ultrawideband wireless telemetry transceiver for medical sensor application. IEEE Trans Biomed Eng 58(3):768–772

    Article  Google Scholar 

  • Ghovanloo M, Najafi K (2004) High data rate frequency shift keying demodulation for wireless biomedical implants. IEEE Trans Circuits Syst I 51(12):2374–2383

    Article  Google Scholar 

  • Ha S, Kim C, Park J, Joshi S, Cauwenberghs G (2016) Energy recycling telemetry IC with simultaneous 11.5 mW power and 6.78 Mb/s backward data delivery over a single 13.56 MHz inductive link. IEEE J Solid State Circuits 51(11):2664–2678

    Article  Google Scholar 

  • Hu Y, Sawan M (2005) A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans Ciruits Syst I Reg Papers 52(12):2552–2562

    Google Scholar 

  • Inanlou F, Kiani M, Ghovanloo M (2011) A 10.2 Mbps pulse harmonic modulation based transceiver for implantable medical devices. IEEE J Solid State Circuits 46(6):1296–1306

    Article  Google Scholar 

  • Jiang D, Cirmirakis D, Schormans M, Perkins TA, Donaldson N, Demosthenous A (2016) An integrated passive phase-shift keying modulator for biomedical implants with power telemetry over a single inductive link. IEEE Trans Biomed Circuits Syst 11(1):64–77

    Google Scholar 

  • Jow U, Ghovanloo M (2009) Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans Biomed Circuits Syst 3(5):339–347

    Article  Google Scholar 

  • Jow U, Ghovanloo M (2010) Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices. IEEE Trans Biomed Circuits Syst 4(5):301–310

    Article  Google Scholar 

  • Kiani M, Ghovanloo M (2014) A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Trans Biomed Circuits Syst 9(1):1–11

    Article  Google Scholar 

  • Lee B (2017) A robust wirelessly-powered recording and stimulation system for a freely-moving animal subject. Ph.D. Thesis, Georgia Institute of Technology

    Google Scholar 

  • Lee B, Ghovanloo M (2019) An overview of data telemetry in inductively powered implantable biomedical devices design and implementation of devices. IEEE Commun Mag 57(2):74–80

    Article  Google Scholar 

  • Lee TJ, Lee CL, Ciou YJ, Huang CC, Wang CC (2008) All-MOS ASK demodulator for low-frequency applications. IEEE Trans Circuits Syst II Express Briefs 55(5):474–478

    Article  Google Scholar 

  • Lee B, Kiani M, Ghovanloo M (2015a) A triple-loop inductive power transmission system for biomedical applications. IEEE Trans Biomed Circuits Syst 10(1):138–148

    Article  Google Scholar 

  • Lee H-M, Kwon KY, Li W, Howel B, Grill WM, Ghovanloo M (2015b) A power-efficient switched-capacitor stimulating system for electrical/optical deep-brain stimulation. IEEE J Solid State Circuits 50(1):360–374

    Article  Google Scholar 

  • Lee S, Lee B, Kiani M, Ghovanloo M (2016) An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sensors 16(2):475–484

    Article  Google Scholar 

  • Lee H-M, Juvekar CS, Kwong J, Chandrakasan AP (2017) A nonvolatile flip-flop-enabled cryptographic wireless authentication tag with per-query key update and power-glitch attack countermeasures. IEEE J Solid State Circuits 52(1):272–283

    Article  Google Scholar 

  • Lim J, Tekes C, Degertekin FL, Ghovanloo M (2016) Towards a reduced-wire interface for CMUT-based intravascular ultrasound imaging systems. IEEE Trans Biomed Circuits Syst 11(2):400–410

    Article  Google Scholar 

  • Lin YP, Tang KT (2016) An inductive power and data telemetry subsystem with fast transient low dropout regulator for biomedical implants. IEEE Trans Biomed Circuits Syst 10(2):435–444

    Article  Google Scholar 

  • Lo YK, Chen K, Gad P, Liu W (2013) A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses. IEEE Trans Biomed Circuits Syst 7(6):761–772

    Article  Google Scholar 

  • Mandal S, Sarpeshkar R (2008) Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans Biomed Circuits Syst 2(4):301–315

    Article  Google Scholar 

  • Rao S, Liombart N (2014) Miniature implantable and wearable on-body antennas: towards the new era of wireless body-centric systems. IEEE Antennas Propag Mag 56(1):271–291

    Article  Google Scholar 

  • Simard G, Sawan M, Massicotte D (2010) High-speed OQPSK and efficient power transfer through inductive link for biomedical implants. IEEE Trans Biomed Circuits Syst 4(3):192–200

    Article  Google Scholar 

  • Troyk PR, DeMichele GA (2003) Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation. In: Proceedings of IEEE 25th EMBS conference, pp 3376–3379

    Google Scholar 

  • Zhou M, Yuce MR, Liu W (2008) A non-coherent DPSK data receiver with interference cancellation for dual-band transcutaneous telemetries. IEEE J Solid-State Circuits 43:2003–2012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Min Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, B., Lee, HM. (2020). Wireless Applications. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6623-9

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics