Skip to main content

Electronic Platforms and Signal Processing for Magnetoresistive-Based Biochips

  • Living reference work entry
  • First Online:
  • 216 Accesses

Abstract

Due to nanotechnology advancements, very high sensitivity and low-noise magnetoresistive (MR) sensors have been fabricated at the nanoscale, thus allowing a high spatial resolution for magnetic field measurements. Due to such characteristics, they have been used in the last decade for biochip applications, such as biomolecular recognition, and, more recently, neuronal magnetic recording. In the biomolecular recognition application, MR sensors provide a much higher performance solution when compared to common fluorescence-based systems, decreasing the limit of detection in several orders of magnitude, into the femtomolar range. In the neuronal recording field, MR sensors are capable of detecting the magnetic field generated by the flow of ionic currents in the neurons with excellent spatial resolution, which can bring new and valuable information about the way neurons communicate with each other, complementing the typical microelectrode arrays, which measure the extracellular voltage of neurons. In addition, MR sensors are galvanically isolated from the brain, thus avoiding problems related to cicatrization that results from electrode implantation. In order to take advantage of the MR sensor characteristics described above, very high-performance electronics must be developed in order to extract the information from the MR sensors. In addition, proper software tools should also be engaged, with the purpose of providing further signal processing and allowing signal visualization adapted to the respective application. This chapter describes examples of the integration of MR sensors in biochip platforms and the specific interface electronics for these platforms.

This is a preview of subscription content, log in via an institution.

References

  • Almeida TM, Piedade MS, Sousa L, Germano J, Lopes PAC, Cardoso FA, Freitas PP (2010) On the modelling of new tunnel junction magnetoresistive biosensors. IEEE Trans Instrum Meas 59(1):92–100

    Article  Google Scholar 

  • Amaral J, Cardoso S, Freitas PP, Sebastiao AM (2011) Toward a system to measure action potential on mice brain slices with local magnetoresistive probes. J Appl Phys 109(7):07B308

    Article  Google Scholar 

  • Amaral J, Pinto V, Costa T, Gaspar J, Ferreira R, Paz E, Cardoso S, Freitas P (2013) Integration of tmr sensors in silicon microneedles for magnetic measurements of neurons. IEEE Trans Magn 49 (7):3512–3515

    Google Scholar 

  • Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13(7–8):731–739

    Article  Google Scholar 

  • Blohm D, Guiseppi-Elie A (2001) New developments in microarray technology. Curr Opin Biotechnol 12(1):41–47

    Article  Google Scholar 

  • Cardoso FA, Ferreira HA, Conde JP, Chu V, Freitas PP, Vidal D, Germano J, Sousa L, Piedade MS, Costa BA, Lemos JM (2006) Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip. J Appl Phys 99(8):08B307

    Article  Google Scholar 

  • Cardoso F, Ferreira R, Cardoso S, Conde J, Chu V, Freitas P, Germano J, Almeida T, Sousa L, Piedade M (2007) Noise characteristics and particle detection limits in diode+MTJ matrix elements for biochip applications. IEEE Trans Magn 43(6):2403–2405

    Google Scholar 

  • Cardoso FA, Germano J, Ferreira R, Cardoso S, Martins VC, Freitas PP, Piedade MS, Sousa L (2008) Detection of 130 nm magnetic particles by a portable electronic platform using spin valve and magnetic tunnel junction sensors. J Appl Phys 103(7):07A310

    Article  Google Scholar 

  • Cardoso FA, Costa T, Germano J, Borme J, Gaspar J, Fernandes JR, Piedade MS, Freitas PP (2012) Integration of magnetoresistive biochips on a CMOS circuit. IEEE Trans Magn 48(11):3784–3787

    Google Scholar 

  • Costa T, Piedade MS, Cardoso F, Freitas PP (2013) CMOS instrumentation system for matrix-based magnetoresistive biosensors. In: IEEE international instrumentation and measurement technology conference. I2MTC 2013, pp. 1315–1318

    Google Scholar 

  • Costa T, Piedade MS, Germano J, Amaral J, Freitas PP (2014) A neuronal signal detector for biologically generated magnetic fields. IEEE Trans Instrum Meas 63(5):1171–1180

    Google Scholar 

  • Dieny B, Speriosu VS, Parkin SSP, Gurney BA, Wilhoit DR, Mauri D (1991) Giant magnetoresistive in soft ferromagnetic multilayers. Phys Rev B 43(1):1297–1300

    Article  Google Scholar 

  • Eversmann B, Jenkner M, Hofmann F, Paulus C, Holzapfl B, Thewes R, SchmittLandsiedel D, Lambacher A, Kaul A, Zeitler R, Merz M, Junze A, Fromhrz P (2005) CMOS sensor array for electrical imaging of neuronal activity. In: IEEE international symposium on circuits and systems. ISCAS 2005, vol 4, pp 3479–3482

    Google Scholar 

  • Ferreira H, Graham D, Feliciano N, Clarke L, Amaral M, Freitas P (2005) Detection of cystic fibrosis related DNA targets using AC field focusing of magnetic labels and spin-valve sensors. IEEE Trans Magn 41(10):4140–4142

    Article  Google Scholar 

  • Freire MAM, Morya E, Faber J, Santos JR, Guimaraes JS, Lemos NAM, Sameshima K, Pereira A, Ribeiro S, Nicolelis MAL (2011) Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants. PLoS One 6(11):e27,554

    Article  Google Scholar 

  • Freitas PP, Leal JL, Melo LV, Oliveira NJ, Rodrigues L, Sousa AT (1994) Spin-valve sensors exchange-biased by ultrathin TbCo films. Appl Phys Lett 65(4):493–495

    Article  Google Scholar 

  • Freitas PP, Ferreira R, Cardoso S, Cardoso F (2007) Magnetoresistive sensors. J Phys Condens Matter 19(16):165–221

    Article  Google Scholar 

  • Germano J, Martins VC, Cardoso FA, Almeida TM, Sousa L, Freitas PP, Piedade MS (2009) A portable and autonomous magnetic detection platform for biosensing. Sensors 9(6):4119–4137

    Article  Google Scholar 

  • Hall D, Gaster R, Makinwa K, Wang S, Murmann B (2013) A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS. IEEE J Solid-State Circuits 48(5):1290–1301

    Google Scholar 

  • Han S, Xu L, Wilson R, Wang S (2006) A novel zero-drift detection method for highly sensitive GMR biochips. IEEE Trans Magn 42(10):3560–3562

    Article  Google Scholar 

  • Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett A 54(3):225–226

    Article  Google Scholar 

  • Leitao J, Germano J, Roma N, Chaves R, Tomas P (2013) Scalable and high throughput biosensing platform. In: 23rd international conference on field programmable logic and applications (FPL), pp 1–6

    Google Scholar 

  • Martins VC, Cardoso FA, Germano J, Cardoso S, Sousa L, Piedade MS, Freitas PP, Fonseca LP (2009) Femtomolar limit of detection with a magnetoresistive biochip. Biosens Bioelectron 24(8):2690–2695

    Article  Google Scholar 

  • Martins VC, Germano J, Cardoso FA, Loureiro J, Cardoso S, Sousa L, Piedade MS, Fonseca LP, Freitas PP (2010) Challenges and trends in the development of a magnetoresistive biochip portable platform. J Magn Magn Mater 322(9–12):1655–1663

    Article  Google Scholar 

  • Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Giant tunnelling magnetoresistance at room temperature with MgO 〈100〉 tunnel barriers. Nat Mater 3(12):862–867

    Article  Google Scholar 

  • Schotter J, Kamp PB, Becker A, Pühler A, Reiss G, Brückl H (2004) Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens Bioelectron 19(10):1149–1156

    Article  Google Scholar 

  • Wang SX, Guanxiong L (2008) Advances in Giant Magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44(7):1687–1702

    Article  Google Scholar 

  • Wise K, Sodagar A, Yao Y, Gulari M, Perlin G, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) under projects EXPL/EEI-ELC/1029/2012, PTDC/EEI-PRO/3219/2012, UID/CEC/50021/2013, EXCL/CTMNAN/0441/2012, Pest-OE/CTM/LA0024/2011, the PhD scholarships SFRH/BD/45488/2008 and SFRH/BD/61569/2009, and research grant SFRH/BPD/85455/2012. INESC-MN acknowledges support from MAGNETRODES EU-FP7-ICT project nº 600730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Germano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Germano, J. et al. (2017). Electronic Platforms and Signal Processing for Magnetoresistive-Based Biochips. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6623-9

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics