Advertisement

VEGF

Living reference work entry

Abstract

VEGF is an approximately 45 kDa homodimeric glycoprotein in the VEGF family, which includes more than seven proteins. Five of the polypeptides are encoded by distinct genes in the human genome: VEGF-A (VEGF), VEGF-B, VEGF-C, VEGF-D, and PGF (placenta growth factor) (Carmeliet 2005; Shibuya 2008). VEGF is considered to play a key role in regulating angiogenesis both in normal and malignant cells. VEGF-A exists in many different isoforms as a result of alternative exon splicing; the most frequent subtypes are VEGF121, VEGF165, VEGF189, and VEGF206. The shorter amino acid sequence isoform VEGF121 is soluble, in contrast to VEGF165, VEGF189, and VEGF206, which are heparin bound with varying affinity. VEGF121 and VEGF165, which also have the propensity to be unbound, are believed to have a central role in tumor angiogenesis (Kerbel and Ellis 2011).

Keywords

Bevacizumab Neuropilin-1 Pazopanib and axitinib Sorafenib Sunitinib Vascular endothelial growth factor (VEGF) Anti-VEGF agents Biomarkers Clinical studies Endothelial functions In cancer Isoforms Preclinical models Receptors Regulator in angiogenesis Tyrosine kinase inhibitors (TKIs) Vascular permeability factor (VPF) VEGF-A gene 

References

  1. Alfaro C, et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. BJC. 2009;100:1111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aragon-Ching JB, et al. The clinical utility of bevacizumab. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 375–85.CrossRefGoogle Scholar
  3. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10.CrossRefPubMedGoogle Scholar
  4. Correale P, et al. Immunomodulatory properties of anticancer monoclonal antibodies: is the ‘magic bullet’ still a reliable paradigm? Immunotherapy. 2011;3:1–4.CrossRefPubMedGoogle Scholar
  5. Ferrara N. Role of vascular endothelial growth factor in regulation of angiogenesis. In: Teicher BA, editor. Antiangiogenic agents in cancer therapy. Totawa: Humana Press; 1999. p. 119–41.CrossRefGoogle Scholar
  6. Ferrara N. Overview and clinical applications of VEGF-A. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 345–35.CrossRefGoogle Scholar
  7. Folkman J. History of angiogenesis. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 1–14.CrossRefGoogle Scholar
  8. Huan Y, et al. Vascular normalizing doses of antiangiogenic treatment reprogram he immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A. 2012;109:17561–6.CrossRefGoogle Scholar
  9. Hurvitz H, et al. Bevacizumab plus Irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. NEJM. 2004;350:2335–42.CrossRefGoogle Scholar
  10. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.CrossRefPubMedGoogle Scholar
  11. Jain RK, et al. Normalization of tumor vasculature and microenvironment. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 273–81.CrossRefGoogle Scholar
  12. Kawamuara H, et al. VEGF signal transduction in angiogenesis. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 205–16.CrossRefGoogle Scholar
  13. Kerbel RS, Ellis L. Angiogenesis. In: DeVita, Hellman, Rosenberg, editors. Cancer. Philadelphia: LWW; 2011. p. 101–12.Google Scholar
  14. McDonald D. Angiogenesis and vascular remodeling in inflammation and cancer: biology and architecture of the vasculature. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 17–33.CrossRefGoogle Scholar
  15. Meadows K, Hurvitz H. Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med. 2012;2:1–27.CrossRefGoogle Scholar
  16. Shibuya M. Vascular permeability/vascular endothelial growth factor. In: Figg WD, Folkman J, editors. Angiogenesis. New York: Springer; 2008. p. 89–98.CrossRefGoogle Scholar
  17. Shibuya M. VEGF and its receptor VEGFR signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2:1097–105.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ulahannan SV, Brahmer JR. Antiangiogenic agents in combination with chemotherapy in patients with advanced non-small cell cancer. Cancer Invest. 2011;29:325–37.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science Business Media, New York (outside the USA) 2013

Authors and Affiliations

  1. 1.Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations